Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}\)=>\(\frac{x}{6}=\frac{y}{4}\)(1)
2y = 4z =>\(\frac{y}{4}=\frac{z}{2}\)(2)
Từ (1) và (2) suy ra : \(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{3x}{18}=\frac{2z}{4}=\frac{3x-2z}{18-4}=\frac{10}{14}=\frac{5}{7}\)
Từ\(\frac{x}{6}=\frac{5}{7}\)=> \(x=\frac{30}{7}\)
\(\frac{y}{4}=\frac{5}{7}\)=> \(y=\frac{20}{7}\)
\(\frac{z}{2}=\frac{5}{7}\)=> \(z=\frac{10}{7}\)
Vậy \(x=\frac{30}{7}\); \(y=\frac{20}{7}\)và \(z=\frac{10}{7}\)
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
chắc chắn mới nhìn vào đề bài là ko ai muốn đọc rồi ( chưa nói làm )
Chênh lệch giữa chiều cao thực tế và chiều cao cho phép là
17 - 13 = 4 phần = 16 m
1 phần = 16 : 4 = 4 m
Chiều cao xây dựng cho phép là
4 x 13 = 52m
Chiều cao xây dựng thực tế là
4 x 17 = 68 m
\(=\dfrac{-8}{27}\cdot81+\dfrac{9}{16}\cdot32\)
=-24+18
=-6
a, \(7^6+7^5-7^4=7^4\left[7^2+4-1\right]=7^4\cdot55⋮55\)
b, \(A=1+5+5^2+5^3+...+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{51}\)
\(\Rightarrow5A-A=\left[5+5^2+5^3+5^4+...+5^{51}\right]-\left[1+5+5^2+5^3+...+5^{50}\right]\)
\(\Rightarrow4A=5^{51}-1\Leftrightarrow A=\frac{5^{51}-1}{4}\)
hello
o mk.............