K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

hi anh trường giang fake top 1 thách đấu

25 tháng 9 2021

???? ý của bn là sao 

23 tháng 12 2020

Ta có : 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}\)=>\(\frac{x}{6}=\frac{y}{4}\)(1)

            2y = 4z =>\(\frac{y}{4}=\frac{z}{2}\)(2)

Từ (1) và (2) suy ra : \(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{3x}{18}=\frac{2z}{4}=\frac{3x-2z}{18-4}=\frac{10}{14}=\frac{5}{7}\)

Từ\(\frac{x}{6}=\frac{5}{7}\)=> \(x=\frac{30}{7}\)

    \(\frac{y}{4}=\frac{5}{7}\)=> \(y=\frac{20}{7}\)

     \(\frac{z}{2}=\frac{5}{7}\)=> \(z=\frac{10}{7}\)

Vậy \(x=\frac{30}{7}\)\(y=\frac{20}{7}\)và \(z=\frac{10}{7}\)

14 tháng 12 2017

Chia cả hai vế cho 5^x: 
pt <=> (3/5)^x + (4/5)^x = 1 
- Ta nhận thấy x=2 là nghiệm của phương trình 
(3/5)^2 + (4/5)^2 = 1 
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình 
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1) 
(4/5)^x < (4/5)^2 (do 4/5<1) 
----------------------------------------... 
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt) 
=> Phương trình không có nghiệm khi x>2. 
+ Tương tự với x<2, phương trình không có nghiệm khi x<2. 

- Vậy phương trình có nghiệm duy nhất x=2.

14 tháng 12 2017

3^x+4^x=5^x vax=2

Thay x vao bieu thu ta co :

3^2+4^2=5^2

 Xong roi do

8 tháng 5 2018

hoi bi dai day

8 tháng 5 2018

bn giúp mk đc ko 

5 tháng 10 2017

chắc chắn mới nhìn vào đề bài là ko ai muốn đọc rồi ( chưa nói làm )

5 tháng 10 2017

chuẩn không cần chỉnh

6 tháng 10 2017

Chênh lệch giữa chiều cao thực tế và chiều cao cho phép là

17 - 13 = 4 phần = 16 m 

1 phần = 16 : 4 = 4 m

Chiều cao xây dựng cho phép là

4 x 13 = 52m

Chiều cao xây dựng thực tế là

4 x 17 = 68 m

25 tháng 7 2016

40+50+80+70+40=280

35+46+75+68+35=40+50+80+70+40=280

\(=\dfrac{-8}{27}\cdot81+\dfrac{9}{16}\cdot32\)

=-24+18

=-6

21 tháng 9 2017

a, \(7^6+7^5-7^4=7^4\left[7^2+4-1\right]=7^4\cdot55⋮55\)

b, \(A=1+5+5^2+5^3+...+5^{50}\)

\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{51}\)

\(\Rightarrow5A-A=\left[5+5^2+5^3+5^4+...+5^{51}\right]-\left[1+5+5^2+5^3+...+5^{50}\right]\)

\(\Rightarrow4A=5^{51}-1\Leftrightarrow A=\frac{5^{51}-1}{4}\)