K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2022

25 nhé

6 tháng 1 2022

\(25\) học lại lớp 2 vđi nhé

22 tháng 11 2016

\(2^x.3^{x-1}.5^{x+2}=12\\ \Leftrightarrow2^x.\frac{3^x}{3}.\left(5^x.25\right)=12\\ \Leftrightarrow\left(2.3.5\right)^x=\frac{36}{25}\\ \Leftrightarrow30^x=\frac{36}{25}\\\Leftrightarrow x=log_{30}\left(\frac{36}{25}\right)\)

Bạn chép đề có đúng không? Nếu sửa lại đề bài 1 tý thì nghiệm sẽ đẹp hơn

\(2^x.3^{x-1}.5^{x-2}=12\\ \Leftrightarrow2^x.\frac{3^x}{3}.\frac{5^x}{25}=12\\ \Leftrightarrow\left(2.3.5\right)^x=900\\ \Leftrightarrow30^x=900\Leftrightarrow x=2\)

7 tháng 12 2022

Cho mk hỏi là làm thế nào để ra 900 ạ 

=5/2+5/12+5/30

=150/60+25/60+10/60

=185/60

=37/12

24 tháng 9 2016

\(f'\left(x\right)=2+2sin2x\)

Ta thấy: 

\(-1\le sin2x\le1\)

\(-2\le2sinx\le2\)

\(0\le2+2sin2x\le4\)

\(\Rightarrow f'\left(x\right)\ge0\forall x\)

nên hàm số đồng biến trên R

24 tháng 9 2016

thank you

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

9: =-32+40+56-28

=8+28

=36

7: =-10+15-28+14

=5-14

=-9

15 tháng 12 2016

xin lỗi nha mình không biết chủ đề nào nên mới chọn đại đây là bài của lớp 7 nha các bạn

 

13 tháng 5 2022

`2x-2/3=1/2`

`2x=1/2+2/3`

`2x=7/6`

`x=7/6:2=7/12`

13 tháng 5 2022

\(2x-\dfrac{2}{3}=\dfrac{1}{2}\Leftrightarrow2x=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\Leftrightarrow x=\dfrac{7}{6}:2=\dfrac{7}{12}\)

7 tháng 7 2016

\(TXD:D=R\)

\(\Leftrightarrow\frac{4^x}{2}+\frac{4^x}{3}-\frac{4^x}{5}>\frac{2^7}{2^x}+\frac{2^5}{2^x}-\frac{2^3}{2^x}\)

\(\Leftrightarrow4^x.\frac{19}{30}>\frac{1}{2^x}.152\\ \Leftrightarrow8^x>240\Leftrightarrow x>\log_8240\)