Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
50+51+52+53+...+52010+52011
= 1+5+52+53+...+52010+52011
=(1+5)+(52+53)+...+(52010+52011)
= (1+5)+52(1+5)+...+52010(1+5)
= (1+5)(1+52+...+52010)
= 6.(1+52+...+52010) chia hết cho 6
=> đpcm
a) 305 - 5x = 290
5.(61-x) = 290
61-x = 58
x = 3
b) (3x - 24) .25 = 26
3x - 24 = 2
3x = 18
x=6
c) 8 + 3.(x-5)2 = 35
3.(x-5)2 = 27
(x-5)2 = 9 = 32 = (-3)2
=> x - 5 = 3 => x = 8
x-5 = - 3 => x = 2
KL:>.
d) 21 chia hết cho x - 2
\(\Rightarrow x-2\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}.\)
..
rùi bn tự lập bảng xét giá trị nhé
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
a) ta có: A = 3^0 + 3^1 + 3^2 + ...+ 3^100
=> 3A = 3^1 + 3^2 + 3^3 + ...+ 3^101
=> 3A-A = 3^101 - 3^0
2A = 3^101 - 1
\(A=\frac{3^{101}-1}{2}\)
b) D = 1 - 5 + 5^2 - 5^3 + ...+ 5^98 - 5^99
=> 5D = 5 - 5^2 + 5^3 - 5^4+...+ 5^99 - 5^100
=> 5D+D = -5^100 + 1
6D = -5^100 + 1
\(D=\frac{-5^{100}+1}{6}\)
Vì (n+7) chia hết cho (n+5)
Nên [(n+5)+2] chia hết cho (n+5)
Mà (n+5) chia hết cho (n+5)
Suy ra, 2 chia hết cho (n+5)
Suy ra,(n+5) là Ư(2)
Ư(2)={-2;-1;1;2}
Vậy tập hợp các giá trị n là { -7;-6;-4;-3}
X=2
đề sai à bạn