Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
4x + 5y = 55
=> 4x \(\le\)55 ( x , y là các số nguyên dương )
=> x < 14 (1)
Ta lại có :
55 chia hết cho 5 ; 5y chia hết cho 5
=> 4x chia hết cho 5
mà 4 không chia hết cho 5
=> x chia hết cho 5 (2)
Tử (1) và (2)
=> x \(\in\){ 0 ; 5 ; 10 }
Th1 : khi x bằng 0
=> 5y = 55
=> y =11
Th2 : Khi x = 5
=> 20 + 5y = 55
=> 5y = 35
=> y = 7
Th3 : khi x = 10
=> 40 + 5y = 55
=> 5y = 15
=> y = 3
Vậy ta có {x ; y} \(\in\) { (0 ; 11) , (5 ; 7) , (10 ; 3) }
b, \(x^2+y^2=4x-6y+12\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)=-1\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=-1\)
Sai đề nha bạn!!
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1/
a)\(xy-3y+8x=\left(y+8\right)\left(x-3\right)=0\)\(\Rightarrow\)\(x=3\) hoặc \(y=-8\)
b) \(xy-2x+5y=\left(y-2\right)\left(x+5\right)=2\)\(\Rightarrow\)\(\left(y-2\right);\left(x+5\right)\inƯ\left(2\right)\)
\(\Rightarrow\)\(\left(y,x\right)\in\left\{\left(0;-4\right),\left(4;-6\right),\left(1;-3\right),\left(3;-7\right)\right\}\)
2/\(x=2;y=-2;z=-1\)
3/
a)a,c âm ,b dương
b) a,b âm,c dương
55 được phân tích là:5x11;55x1
ta có bảng sau
vậy............