Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(4ab.\frac{1}{3}ac-2aca-9a^2.\frac{1}{2}b+10a^2.\frac{1}{5}c+a^2b-a^2bc\)
\(=\left(4.\frac{1}{3}\right)\left(a.a\right).bc-2a^2c-\left(9.\frac{1}{2}\right)a^2b+\left(10.\frac{1}{5}\right)a^2c+a^2b-a^2bc\)
\(=\frac{4}{3}a^2bc-2a^2c-\frac{9}{2}a^2b+2a^2c+a^2b-a^2bc\)
\(=\left(\frac{4}{3}a^2bc-a^2bc\right)+\left(-2a^2c+2a^2c\right)+\left(-\frac{9}{2}a^2b+a^2b\right)\)
\(=\frac{1}{3}a^2bc+\left(-\frac{7}{2}a^2b\right)\)
b. \(2ab-2bc.c+ab+\frac{1}{2}c^2b-4cb^2+2bcb\)
\(=2ab-2bc^2+ab+\frac{1}{2}c^2b-4cb^2+2b^2c\)
\(=\left(2ab+ab\right)+\left(-2bc^2+\frac{1}{2}c^2b\right)+\left(-4cb^2+2b^2c\right)\)
\(=3ab+-\frac{3}{2}bc^2+-2b^2c\)
\(=b\left(3a-\frac{3}{2}c^2-2bc\right)\)
10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).
b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)
. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).
Vậy : (a + b + c)\(^2\) ≤ 3( a\(^2\) + b\(^2\) + c\(^2\)).
Cách khác : Biến đổi tương đương
a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng
b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)