Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4+6+8+...+2012\right)\cdot\frac{1}{1000}\cdot\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)\)
\(\text{Số số hạng trong dãy }4+6+8+...+2012\text{ là : }\)
\(\left(2012-4\right)\text{ : }2+1=1005\left(\text{số hạng}\right)\text{ }\)
\(4+6+8+...+2012=\left(2012+4\right)\cdot1005\text{ : }2=1013040\)
\(\text{Quay lại bài toán , thay 4 + 6 + 8 + ... + 2012 = 1013040 ta có : }\)
\(1013040\cdot\frac{1}{1000}\cdot\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)\)
\(=\frac{1013040}{1}\cdot\frac{1}{1000}\cdot\left(\frac{6}{12}+\frac{9}{12}+\frac{10}{12}\right)\)
\(=\frac{1013040}{1000}\cdot\frac{25}{12}\)
\(=\frac{25326000}{12000}=2110,5\)
Mik cx làm ra kết quả như thế nhưng điền vào violimpic lại sai
Đặt A=4+6+8+...+2012
Số số hạng của dãy là: (2012-4)\(\div\)2+1=1005
Tổng A=(2012+4)\(\times\)1005\(\div\)2=1013040
\(\Rightarrow\)1013040\(\times\frac{1}{1000}\times\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)=\) 1013040\(\times\frac{1}{1000}\times\frac{25}{12}=\)\(\frac{4221}{2}\)=2110,5
Đặt d=ƯCLN(12n+1;30n+2)
=>12n+1 chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d
=>60n+5 chia hết cho d; 60n+4 chia hết cho d
=>(60n+5)-(60n+4) chia hết cho d
=>1 chia hết cho d
=>d=1
=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản
Bài 1:
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)
\(=\frac{9}{41}-\frac{206}{375}=\)
ta có\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
tách
\(B=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2B=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)
\(2B-B=\frac{1}{2}-\frac{1}{1024}\)
thay vào B ta có
\(\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{1024}=\frac{1}{1024}\)
\(A=\frac{1}{2}-\frac{1}{4}-\cdot\cdot\cdot-\frac{1}{1024}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\)
\(\Rightarrow2A=1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1-\frac{1}{2}-\cdot\cdot\cdot-\frac{1}{2^9}\right)-\left(\frac{1}{2}-\frac{1}{2^2}-\cdot\cdot\cdot-\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^{10}}\)
\(\Rightarrow A=\frac{2^9+1}{2^{10}}\)
\(\Rightarrow A=\frac{513}{1024}\)
Đặt A = 4 + 6 + 8 + 10 + .... + 2012
SSH: (2012 - 4) : 2 + 1 = 1005
=> A = (2012 + 4) . 1005 : 2 = 1013040
\(\Rightarrow1013040.\frac{1}{1000}\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)=1013040.\frac{1}{1000}.\frac{25}{12}=1013040.\frac{1}{480}=\frac{4221}{2}\)