Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}==\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)
a)\(A=\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+\frac{2}{48}+\frac{2}{96}+\frac{2}{192}\)
\(\frac{1}{2}xA=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1}{4}xA=\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}+\frac{1}{384}\)
\(\frac{1}{4}xA-\frac{1}{2}xA=\frac{1}{3}-\frac{1}{384}\)
\(\frac{1}{4}xA=\frac{127}{384}\)
\(A=\frac{127}{384}:\frac{1}{4}\)
\(A=\frac{127}{96}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
Ta có: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{23\cdot27}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{23}-\dfrac{1}{27}\)
\(=\dfrac{1}{3}-\dfrac{1}{27}=\dfrac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)
\(A=\frac{4}{3X7}+\frac{4}{7X11}+\frac{4}{11X15}+...+\frac{4}{100X104}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(=\frac{1}{3}-\frac{1}{104}\)
\(=\frac{101}{312}\)
Chúc bạn học giỏi nha!!!
K cho mik với nhé nguyen huu thuong 2005
\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{100.104}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{3}-\frac{1}{104}=\frac{104}{312}-\frac{3}{312}=\frac{101}{312}\)
a)goi so cuoi la x;Ta co:
S= ......(De bai)
=1/3-1/7+1/7-1/11+1/11-1/15+...+...-x=664/1995
=1/3-x=664/1995
x=1/3-664/1995
x=1/1995
. S = 1/3 - 1/7 + 1/7 - 1/11 + ... = 664/1995
=>S = 1/3 - 1/X = 664/1995 => X = 1995
Vậy số hạng cuối cùng sẽ = 1/(1995-4) - 1/(1995) = 4/1991x1995
b. Dể dàng nhận thấy dạng tổng quát của các số hạn là : 4/(4n-1)[4(n+1)-1] với n=1,2,3....
Do số hạn cuối cùng của dãy là 4/1991x1995 nên (4n-1)[4(n+1)-1] = 1991x1995
=> n = 498.
Vậy dãy có 498 số hạn.
----------------------------------
Chúc bạn vui!
Gọi số cần tìm là \(x\), ta có :
S = \(\frac{4}{3x7}\)+ \(\frac{4}{7x11}\)+ \(\frac{4}{11x15}\)+ ............\(x\) = \(\frac{664}{1995}\)
= \(\frac{4}{3}\)- \(\frac{4}{7}\)+ \(\frac{4}{7}\) - \(\frac{4}{11}\)+ \(\frac{4}{11}\) - \(\frac{4}{15}\)+ ..............\(x\) = \(\frac{664}{1995}\)
= \(\frac{4}{3}\)- \(x\)= \(\frac{664}{1995}\)( loại các sô giống nhau )
\(x\)= \(\frac{4}{3}\)- \(\frac{664}{1995}\)
\(x\)= \(\frac{1996}{1995}\)
a.Goi so cuoi la x ta co
....................(de bai)
=1/3-1/7+1/7-1/11+1/11-1/15+...-x=664/1995
=1/3-x=664/1995
x=1/3-664/1995
x=1/1995
SỬa đề: \(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+...+\dfrac{4}{23\cdot27}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\)
=1/3-1/27
=8/27