Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
Vì A bằng tổng các lũy thừa của 4
=> A chia hết cho 4
Có A = ( 4 + 4^2 + 4^3 ) + ( 4^4 + 4^5 + 4^6 ) + ... + ( 4^2008 + 4^2009 + 4^2010 )
A = 4( 1 + 4 + 4^2 ) + 4^4( 1 + 4 + 4^2 ) + ... + 4^2008( 1 + 4 + 4^2 )
A = 4.21 + 4^4 . 21 + ... + 4^2008 . 21
A = 21( 4 + 4^4 + ... + 4^2008 )
=> A chia hết cho 21
=> A chia hết cho 3 , 7
Có A = ( 4 + 4^2 ) + ( 4^3 + 4^4 ) + ... + ( 4^2009 + 4^2010 )
A = 4( 1 + 4 ) + 4^3( 1 + 4 ) + ... + 4^2009( 1 + 4 )
A = 4 . 5 + 4^3 . 5 + ... + 4^2009 . 5
A = 5( 4 + 4^3 + ...+ 4^2009 )
=> A chia hết cho 5
Mà 420 = 3 . 4 . 5 . 7
=> A chia hết cho 420 ( vì A chia hết cho 3 , 4 , 5 , 7 )
Có : A = (4+4^2)+(4^2+4^3)+.....+(4^23+4^24)
= 20+4.(4+4^2)+.....+4^22.(4+4^2)
= 20+4.20+......+4^22.20
= 20.(1+4+.....+4^22) chia hết cho 20 (1)
Lại có : A = (4+4^2)+(4^3+4^4)+.....+(4^23+4^24)
= 4.(1+4)+4^3.(1+4)+......+4^23.(1+4)
= 4.5+4^3.5+....+4^23.5
= 5.(4+4^3+.....+4^23) chia hết cho 5 (2)
A = (4+4^2+4^3)+(4^4+4^5+4^6)+......+(4^22+4^23+4^24)
= 4.(1+4+4^2)+4^4.(1+4+4^2)+......+4^22.(1+4+4^2)
= 4.21+4^4.21+.....+4^22.21
= 21.(4+4^4+.....+4^22) chia hết cho 21 (3)
Từ (1) ; (2) và (3) => A chia hết cho 4.5.21 = 420 ( vi 4 ; 5 ; 21 là 3 số nguyên tố với nhau từng đôi một )
=> ĐPCM
Tk mk nha
S=4+4^2+4^3+4^4+...+4^2016
S=(4+4^2 +...+4^6)+....+(4^2011+4^2012+...+4^2016)
S=5460+...+4^2010*(4+4^2+...+4^6)
S=5460+..+5460*4^2010
S=5460*(1+..+4^2010)
Vì 5460 chia hết cho 420 nên S chia hết cho 420