Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)\(\Leftrightarrow2.\left(1-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow2.\frac{48}{49}+4x=7.\frac{98}{99}\)
\(\Leftrightarrow\frac{96}{49}+4x=\frac{686}{99}\)
\(\Leftrightarrow4x=\frac{686}{99}-\frac{96}{49}\)
\(\Leftrightarrow4x=4,970109256\)
\(\Leftrightarrow x=4,970109256:4\)
\(\Leftrightarrow x=1,242527314\)
BÀI 1:
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(S=1+\frac{1}{1.2}+\frac{1}{2.2}+\frac{1}{2.4}+\frac{1}{4.4}+\frac{1}{4.8}\)
\(S=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}\)
\(S=1+1-\frac{1}{8}\)
\(S=\frac{15}{8}\)
BÀI 2:
\(A=1.2+2.3+3.4+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(3A=\left(1.2.3+2.3.4+3.4.5+98.99.100\right)-\left(1.2.3+2.3.4+...+97.98.99\right)\)
\(3A=98.99.100\)
\(3A=970200\)
\(\Rightarrow A=970200:3\)
\(A=323400\)
CHÚC BN HỌC TỐT!!!
C=1*2+2*3+3*4+...+98*99
C=2+6+12+...+9702
C=2+9702
C=9704
vay C=9704
D=(1*99+2*99+3*99+...+99*99)-(1*2+2*3+3*4+...+98*99)
D=(99+198+297+...+9801)-(2+6+12+...+9702)
D=(99+9801)-(2+9702)
D=9900-9704
D=196
vay D=196
ai di qua dong tinh thi nho h cho minh nhe
C1 : B=\(\frac{1^2}{1.2}.\frac{2^2}{2.3}......\frac{98^2}{98.99}\)=\(\frac{1.1}{1.2}.\frac{2.2}{2.3}......\frac{98.98}{98.99}\)=\(\left(\frac{1.2......98}{1.2.....98}\right).\left(\frac{1.2......98}{2.3......99}\right)\)
\(1.\frac{1}{99}=\frac{1}{99}\)
C2:Đầu tiên cũng tách ra:\(1^2\)=1.1;\(2^2\)=2.2;...;\(98^2\)=98.98
Xong rút gọn ở tử và mẫu được:\(\frac{1}{2}.\frac{2}{3}.......\frac{98}{99}=\frac{1.2.....98}{2.3.....99}=\frac{1}{99}\)
Bạn thấy cách nào rễ hiểu hơn thì ghi nhé
\(-\frac{4}{1.2}-\frac{4}{2.3}-\frac{4}{3.4}-...-\frac{4}{98.99}\)
\(=-4\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(=-4\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{99-98}{98.99}\right)\)
\(=-4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(=-4\left(1-\frac{1}{99}\right)=-\frac{392}{99}\)