K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

áp dụng công thức (a-b)^5= a^5 - 5a^4b + 10a^3b^2 - 10a^2b^3 + 5ab^4 - b^5 

15 tháng 1 2019

ae giải ra dùm mik vs ạ

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;) 

11 tháng 2 2017

chắc là 439

18 tháng 8 2017

Ta có:

\(x^3+x^2-4x=4\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow\left(x^3+x^2\right)-\left(4x+4\right)=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow x-2=0;x+2=0;x+1=0\)

\(\Rightarrow x\in\left\{2;-2;-1\right\}\)

18 tháng 8 2017

a)\(2.\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right).\left(2-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

b)\(3x^3-48x=0\)

\(\Leftrightarrow3x\left(x^2-16\right)=0\)

\(\Leftrightarrow3x.\left(x-4\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\frac{x=4}{\frac{x=0}{x=-4}}}\)

c)\(x^3+x^2-4x=4\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x=0}{x=2}\\\overline{x=-2}\end{cases}}\)

16 tháng 7 2017

a)  \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\)   nên  \(\left(x-1\right)^2+4\ge4\)

Vậy GTNN của P là 4  khi  x = 1

b)   \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)

Vì   \(2.\left(x-1,5\right)^2\ge0\)   nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)

Vậy  GTNN của Q là -4,5  khi x = 1,5

c)  \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)

\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)

Vì  \(\left(x-0,5\right)^2\ge0\)  và   \(\left(y+3\right)^2\ge0\)  nên   \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)

Vậy   GTNN của M là 0,75  khi x = 0,5  và y = -3

16 tháng 7 2017

Ta có : P = x2 - 2x + 5 

= x2 - 2x + 1 + 4 

= (x - 1)2 + 4 

Mà : (x - 1)2 \(\ge0\forall x\)

Nên : (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là : 4 khi x = 1 

15 tháng 1 2019

Đặt 4 - x = a và x - 2 = b thì a + b = 2 
Mà theo đề bài : a^5 + b^5 = 32 
<=> (a^3 + b^3)(a^2 + b^2) - a^2b^2(a + b) = 32 
<=> [(a + b)^3 - 3ab(a + b)].[(a + b)^2 - 2ab] - a^2.b^2.(a + b) = 32 
<=> (8 - 6ab)(4 - 2ab) - 2(ab)^2 = 32 
<=> 12(ab)^2 - 40(ab) + 32 = 32 
<=> 4ab(3ab - 10) = 0 
=> ab = 0 hoặc ab = 10/3 
* Nếu ab = 0 thì a và b sẽ là nghiệm của pt : X^2 - 2X = 0 => X = 0 hoặc X = 2 
=> (a ; b) = (0 ; 2) v (2 ; 0) 
=> x = 4 hoặc x = 2 
* Nếu ab = 10/3 thì a,b sẽ là nghiệm của pt : X^2 - 2X + 10/3 = 0 (Phương trình vô nghiệm) 

S = {2 ; 4}

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss 

4 tháng 8 2017

Ta có : 6x2 - 11x + 3 

= 6x2 - 2x - 9x + 3

= (6x2 - 2x) - (9x - 3)

= 2x(3x - 1) - 3(3x - 1)

= (2x - 3)(3x - 1)

4 tháng 8 2017

K MIK NHA BẠN !!!!!!!!!!

bÀI 1 

bÀI 2 : 

Bài 3 :

Bài 4: 

5,

6, 

7, 

8,

9, 

10,

11,

12,

13,

K MIK NHA BẠN !!!!!!!!!!

31 tháng 7 2017

1) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=x^4+x^3+2x^2+x^3+x^2+2x+x^2+x+2-12\)

\(=x^4+2x^3+4x^2+3x-10=\left(x^4+2x^3\right)+\left(4x^2+8x\right)+\left(-5x-10\right)\)

\(=x^3.\left(x+2\right)+4x.\left(x+2\right)-5.\left(x+2\right)=\left(x+2\right)\left(x^3+4x-5\right)\)

\(=\left(x+2\right)\left(x^3-x^2+x^2-x+5x-5\right)=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

2) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)

Đặt  \(a=x^2+7x+10\) thì ta có :\(a.\left(a+2\right)-24=a^2+2a-24=\left(a^2+2a+1\right)-25=\left(a+1\right)^2-5^2\)

\(=\left(a+1+5\right)\left(a+1-5\right)=\left(a+6\right)\left(a-4\right)\)

Thay a , ta có :

\(\left(x^2+7x+10+6\right)\left(x^2+7x+10-4\right)=\left(x^2+7x+16\right).\left(x^2+x+6x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)