K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

4 : 3 =4/3

chọn B

b nha

Chúc bạn học tốt

29 tháng 1 2018

\(2+2+2+2+2=2=2.6=12\)

\(3+3+3+3+3+3=3.6=18\)

\(4+4=4.2=8\)

29 tháng 1 2018

12

18

8

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)Cần...
Đọc tiếp

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(

Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)

Cần chứng minh

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)

2
8 tháng 9 2019

WTF Toán Lớp 1

8 tháng 9 2019

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

22 tháng 2 2021

Câu 1:

(x-18)-42=(23-43)-(70+x)

x-18-42=-20-70-x

x-18-42+20+70+x=0

2x+30=0

2x=-30

x=-15

Câu 2 : Tính tổng

a,1+(-2)+3+(-4)+...+19+(-20)

Từ 1 đến -20 có 20 số hạng 

=> Có 10 nhóm

=>(1-2)+(3-4)+...+(19-20)

=-1-1-1-....-1

=-1.10

=-10

b,c,d,e làm tương tự ta được : 

b) -50

c) -24

d) -99

e) -100

22 tháng 2 2021

Câu 3 : Tìm x

a)\(x\left(x+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)

Vậy : x={0;-7}

b)\(\left(x+12\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-12\\x=3\end{cases}}}\)

Vậy:....

c)\(\left(-x+5\right)\left(3-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)

Vậy:......

d)\(x\left(2+x\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}}\)

Vậy:.....

e) \(\left(x-1\right)\left(x+2\right)\left(-x-3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}}\)

Vậy:........

Câu 4 : 

a) ab+ac

=a(b+c)

b) ab-ac+ad

=a(b-c+d)

c) ax-bx-cx+dx

=x(a-b-c+d)

d) a(b+c)-d(b+c)

=(b+c)(a-d)

e) ac-ad+bc-bd

=a(c-d)+b(c-d)

=(c-d)(a+b)

f) ax+by+bx+ay

=x(a+b)+y(a+b)

=(a+b)(x+y)

#H

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

2
16 tháng 10 2016

Toán lớp 1 cái gì,xạo.Toán trung học thì có.

16 tháng 10 2016

Lớp 1 mà làm được cái này thì...THIÊN TÀI

24 tháng 1 2019

 a/ (x+3) . (X+2)=0

=>\(\hept{\begin{cases}x+3=0\\x+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=-2\end{cases}}}\)

vậy x\(\in\left\{-3,-2\right\}\)

24 tháng 1 2019

b/(x-7) .(x+2005) =0

\(\Rightarrow\hept{\begin{cases}x-7=0\\x+2005=0\end{cases}\Rightarrow\hept{\begin{cases}x=7\\x=-2005\end{cases}}}\)

vậy x\(\in\left\{-2005,7\right\}\)