Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phương trình nghiệm nguyên:
Ta có: 3xy+x-y-6=0
(3xy+x)-y=6
x(3y+1)-1/3(3y+1)=6-1/3
(x-1/3)(3y+1)=17/3
3(x-1/3)(3y+1)=17
(3x-1)(3y+1)=17
Vì x, y thuộc Z nên 17 chia hết cho 3x-1, 3y+1
Nên 3x-1, 3y+1 thuộc Ư(17)={1, -1, 17, -17} nên thay vào ta được tương ứng:( Lưu ý (3x-1)(3y+1)=17 )
x= 0; 2/3.
y= -6; 16/3
( Ta thấy chỉ có x=0; y=-6 thỏa mãn x, y thuộc Z )
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
Thay X= \(\dfrac{1}{2}\)và Y= \(\dfrac{-1}{3}\) vào biểu thức A=\(^{3x^3y}\)\(\)+\(^{6x^2y^2}\)+\(^{3xy^3}\)
Ta có: A=3.\(\dfrac{1}{2}^3.\dfrac{-1}{3}\)+\(6.\dfrac{1}{2}^2.\)\(\dfrac{-1}{3}^2\)\(\)+\(3.\dfrac{1}{2}.\dfrac{-1^3}{3}\)
A= 3.\(\dfrac{1}{8}\).\(\dfrac{-1}{3}\)+6.\(\dfrac{1}{4}\).\(\dfrac{1}{9}\)+3.\(\dfrac{1}{2}\).\(\dfrac{-1}{27}\)
A= \(\dfrac{-1}{8}\)+\(\dfrac{1}{6}\)+\(\dfrac{-1}{18}\)
A= \(\dfrac{-1}{72}\)
Vậy giá trị của biểu thức A=\(^{3x^3y}\)+\(^{6x^2y^2}\)+\(^{3xy^3}\) tại X=\(\dfrac{1}{2}\)và Y=\(\dfrac{-1}{3}\) là \(\dfrac{-1}{72}\)
1. 4x/6y=(2x+8)/(3y+11) <=> 12xy+44x=12xy+48y
<=> 44x=48y =>x/y=12/11
mình chỉ biết câu 1 thôi :v
a) \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x-\dfrac{1}{2}=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=1\)
\(\Rightarrow x=3\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\dfrac{-1}{2}\)
d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\).
a , \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=> \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b , \(\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c , \(\left(2x-1\right)^3=-8\Rightarrow2x-1=-2\Rightarrow x=\dfrac{-1}{2}\)
d , \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4^2}\)
<=> \(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
a, 3(x+y)
Thay x=6,y=15 vào bt trên ta có:
3(6+15) = 3.21 =63
b, 2(2x+y)
Thay x=6, y=15 vào bt trên ta có:
2(2.6+15) = 2(12+15) = 2.27 = 54
c, \(\frac{x}{2}\)
Thay x=6 vào bt trên ta có:
6:2=3
các ý khác bạn lạm tương tự như thế này nhé