Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;2\right\}\)
c) \(3x\left(x-5\right)-x^2+25=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\2x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{2}\right\}\)
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
a) = (x+3).(x-3)^2-(x-3)(x+3)^2
=(x^2-9)(x-3)-(x^2-9)(x+3)
=(x^2-9)(x-3-x-3)
=-6(x^2-9)
các câu còn lại tương tự
\(a,\left(x+3\right)\left(x^2-3x+9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+3-\left(x^3-3\right)\)
\(=x^3+3-x^3+3\)
\(=6\)
\(b,\left(x-5\right)\left(x^2+5x+25\right)-\left(x+5\right)\left(x^2-5x+25\right)\)
\(=x^3-5^3-x^3-5^3\)
\(=-125-125\)
\(=-250\)
\(\Leftrightarrow3x+15+3\left(x-5\right)=2x^2+10x\)
\(\Leftrightarrow2x^2+10x=3x+15+3x-15=6x\)
=>2x(x+2)=0
=>x=0 hoặc x=-2
\(\dfrac{3x+15}{x^2-25}+\dfrac{3}{x+5}=\dfrac{2x}{x-5}\)
\(ĐK:x\ne\pm5\)
\(\Leftrightarrow\dfrac{3x+15+3\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow3x+15+3\left(x-5\right)=2x\left(x+5\right)\)
\(\Leftrightarrow3x+15+3x-15=2x^2+10x\)
\(\Leftrightarrow2x^2+4x=0\)
\(\Leftrightarrow2x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\) ( tm )
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(\Leftrightarrow3x^2-6x+3-2x+3x^2-10+15x=-25\\ \Leftrightarrow6x^2+7x+18=0\\ \Delta=49-432< 0\\ \Leftrightarrow x\in\varnothing\)
:v đã bảo ko chơi kiểu giang lận ấy mà xem suphu tui ở trên kìa :))