Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow3^x+3^2.3^x+3^4.3^x=2457\)
\(\Leftrightarrow3^x\left(1+3^2+3^4\right)=2457\Leftrightarrow3^x.91=2457\)
\(\Leftrightarrow3^x=2457:91=27=3^3\Rightarrow x=3\)
45D
46?
47C
48A
49A là khẳng định đúng, 3 khẳng định còn lại sao
50D
a: =16-2+91=14+91=105
b: =9*5+8*10-27=45+53=98
c: =32+65-3*8=8+65=73
d; \(=5^3-10^2=125-100=25\)
e: \(=4^2-3^2+1=8\)
f: =9*16-16*8-8+16*4
=16(9-8+4)-8
=16*5-8
=72
a) \(2^4-50:25+13\cdot7\)
\(=2^4-2+91\)
\(=16-2+91\)
\(=14+91\)
\(=105\)
b) \(3^2\cdot5+2^3\cdot10-3^4:3\)
\(=9\cdot5+8\cdot10-3^3\)
\(=45+80-27\)
\(=98\)
c) \(2^5+5\cdot13-3\cdot2^3\)
\(=32+65-3\cdot8\)
\(=32+65-24\)
\(=73\)
d) \(5^{13}:5^{10}-5^2\cdot2^2\)
\(=5^{13-10}-\left(5\cdot2\right)^2\)
\(=5^3-10^2\)
\(=125-100\)
\(=25\)
e) \(4^5:4^3-3^9:3^7+5^0\)
\(=4^{5-3}-3^{9-7}+1\)
\(=4^2-3^2+1\)
\(=16-9+1\)
\(=8\)
f) \(3^2\cdot2^4-2^3\cdot4^2-2^3\cdot5^0+4^2\cdot2^2\)
\(=3^2\cdot4^2-2^3\cdot4^2-2^3\cdot1+4^2\cdot2^2\)
\(=4^2\cdot\left(3^2-2^3+2^2\right)-2^3\)
\(=4^2\cdot\left(9-8+4\right)-8\)
\(=16\cdot5-8\)
\(=72\)
\(a,\dfrac{-1}{8}=\dfrac{3}{x}\\ \dfrac{3}{-24}=\dfrac{3}{x}\\ x=-24\\ b,\dfrac{x}{3}=\dfrac{3}{x}\\ x.x=3.3\\ x^2=9\\ x=\pm3\\ c,\dfrac{3}{4}.x=1\dfrac{1}{2}\\ \dfrac{3}{4}.x=\dfrac{3}{2}\\ x=\dfrac{3}{2}:\dfrac{3}{4}\\ x=2\\ d,x-\dfrac{3}{10}=\dfrac{7}{15}:\dfrac{3}{5}\\ x-\dfrac{3}{10}=\dfrac{7}{9}\\ x=\dfrac{7}{9}+\dfrac{3}{10}\\ x=\dfrac{97}{90}\\ e,\dfrac{-4}{7}-x=\dfrac{-8}{3}.\dfrac{3}{7}\\ \dfrac{-4}{7}-x=\dfrac{-8}{7}\\ x=\dfrac{-4}{7}+\dfrac{8}{7}\\ x=\dfrac{4}{7}\\ \)
\(3^x+3^{x+2}+3^{x+4}=2457\)
\(\Leftrightarrow3^x+3^2.3^x+3^4.3^x=2457\)
\(\Leftrightarrow3^x.\left(1+3^2+3^4\right)=2457\)
\(\Leftrightarrow3^x.91=2457\)
\(\Leftrightarrow3^x=2457:91\)
\(\Leftrightarrow3^x=27=3^3\)
\(\Leftrightarrow x=3\)
\(3^x+3^{x+2}+3^{x+4}=2457\)
\(\Leftrightarrow3^x+3^x.9+3^x.81=2457\)
\(\Leftrightarrow3^x\left(1+9+81\right)=2457\)
\(\Leftrightarrow3^x.91=2457\)
\(\Leftrightarrow3^x=27\Leftrightarrow3^x=3^3\Leftrightarrow x=3\)