K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

\(1)x^3-x^2y-4x-4y=x^2\left(x-y\right)-4\left(x-y\right)=\left(x^2-2^2\right)\left(x-y\right)=\left(x^2-4x+4\right)\left(x-y\right)\)

\(2)x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x-1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x-1\right)\)

X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)

2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)

➜ 2X=2

➜X = 1

Vậy....................

2 tháng 4 2020

Lộn đề rồi

Tôi nghĩ là như này :)) Sai thì chịu nhá :((

Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)

Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)

Nên VP pt (1) cũng phải lớn hơn bằng 0

Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)

Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)

Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)

\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )

Vậy \(x=-2\) thỏa mãn pt.

6 tháng 2 2020
\(\left|x+1\right|\) - + + + +
3\(\left|x-1\right|\) - - + + +
\(\left|x\right|\) - - - + +
\(2\left|x-2\right|\) - - - - +
PT 2x-4=5x-2 2x-4=5x-2 -4x+2=2x-2 -4x+2=-2x+6

-1 0 1 2

1) x=-2/3>-1( loại)

2)

14 tháng 1 2017

Ta có x-y=4

<=>(x-y)^2=16

<=>x^2-2xy+y^2=16

<=>x^2+y^2-2.5=16

<=>x^2+y^2-10=16

<=>x^2+y^2=26

<=>x^2+y^2+2xy=26+10

<=>(x+y)^2=36

<=>x+y=6 hoặc -6

14 tháng 1 2017

từ  x  - y = 4   suy ra y = x - 4 
thay vào xy=5 suy ra x(x-4)=5 
suy ra x^2-4x+4=9 
suy ra (x-2)^2=9 
suy ra x-2=+-3 
vi x<0 suy ra x=-3+2=-1 
suy ra y=x-4=-1-4=-5 
suy ra x+y=-1+-5=-6

1 tháng 3 2017

tiếp nè

2c) x4-4x3+4x2-x2-2x-1=0 ra hằng đẳng thức r nhé

1 tháng 3 2017

2

a) x2(x2-3)=4x+3

<=> x4-3x2-4x-3=0

<=>x4-2x2+1-x2-4x-4=0

ra hằng đẳng thức rồi đó bạn, tự giải típ

b, x3(x+1)=5(5-2x)-x3

<=>x4+x3-25+10x+x3=0

<=>x4+2x3+x2-x2+10x-25=0

ra hằng đẳng thức r nhé

8 tháng 11 2018

x+y+z=-3 => (x+1)+(y+1)+(z+1)=0

Đặt x+1=a,y+1=b,z+1=c ta có:

a+b+c=0 => a3+b3+c3=3abc (tự cm) hay (x+1)3+(y+1)3+(z+1)3=3(x+1)(y+1)(z+1) (dpdcm)