Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
Bài 1:
a) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{360}{12}=30\)
\(\Rightarrow x=90;y=120;z=150\)
b) \(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x}{-2}=\dfrac{2y}{-8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{-2-\left(-8\right)+15}=\dfrac{1200}{21}\)c) \(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{2z}{-4}=\dfrac{x+y-2z}{5+1-\left(-4\right)}=\dfrac{160}{8}=20\)
\(\Rightarrow x=100;y=20;z=-40\)
d) \(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{330}{25}=13,2\)
\(\Rightarrow x=39,6;y=105,6;z=66\)
e) \(\dfrac{x}{10}=\dfrac{y}{5};\dfrac{y}{2}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{10}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}\)
1. x/3=y/4=z/5 và x+y+z=360
A/d tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z+y+z}{3+4+5}=\dfrac{360}{12}=30\)
=>x/3=30=>x=3.30=90
y/4=30=>y=4.30=120
z/5=30=>z=5.30=150
vậy x=90,y=120,z=150
3. gọi độ dài của tam giác lần lượt là a, b,c theo đầu bài ta có: a/3=b/4=c/5 và a+b+c=24m
a/d tính chất dãy tỉ số bằng nhau, ta có:
a/3=b/4=c/5=\(\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
=>a/3=2=>a=3.2=6m
b/4=2=>b=2.4=8m
c/5=2=>c=5.2=10m
vậy a=6m,b=8m,c=10m
Sửa đề: 3(x-1)=2(y+2)
Ta có: 3(x-1)=2(y+2)
\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)
mà 4(y+2)=5(z-3)
nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)
\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)
\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)
mà 2x+3y-4z=205
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)
Vậy: (x,y,z)=(131;193;159)