Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{99}{100}\)
\(=\dfrac{3}{2^2}\cdot\dfrac{2^3}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99}{10^2}\)
\(=\dfrac{11}{20}\)
bạn có thể giải thích rõ tại sao S=\(\dfrac{11}{20}\) đc ko
\(S=\frac{2^2}{2^2-1}\times\frac{3^2}{3^2-1}\times...\times\frac{100^2}{100^2-1}\times\frac{101^2}{101^2-1}\)
\(=\frac{\left(2\times3\times4\times...\times101\right)\times\left(2\times3\times4\times...\times101\right)}{\left(1\times2\times3\times...\times100\right)\times\left(3\times4\times5\times...\times102\right)}\)
\(=\frac{101\times2}{1\times102}=\frac{101}{51}\)
\(51\times S=101\)
Câu 3:
a) \(\dfrac{12}{36}=\dfrac{12:12}{36:12}=\dfrac{1}{3}\)
\(\dfrac{-16}{20}=\dfrac{-16:4}{20:4}=\dfrac{-4}{5}\)
b) \(\dfrac{21}{105}=\dfrac{21:21}{105:21}=\dfrac{1}{5}\)
\(\dfrac{35}{150}=\dfrac{35:5}{150:5}=\dfrac{7}{30}\)
Câu 4:
a) \(\dfrac{3}{10}+\dfrac{5}{10}=\dfrac{3+5}{10}=\dfrac{8}{10}=\dfrac{4}{5}\)
b) Ta có: \(\left(-27\right)\cdot36+64\cdot\left(-27\right)+23\cdot\left(-100\right)\)
\(=\left(-27\right)\cdot\left(64+36\right)+23\cdot\left(-100\right)\)
\(=-27\cdot100-23\cdot100\)
\(=100\left(-27-23\right)\)
\(=-50\cdot100=-5000\)
c) \(\dfrac{5}{8}+\dfrac{3}{12}=\dfrac{15}{24}+\dfrac{6}{24}=\dfrac{21}{24}=\dfrac{7}{8}\)
d) Ta có: \(\dfrac{-2}{17}+\dfrac{3}{19}+\dfrac{-15}{17}+\dfrac{16}{19}+\dfrac{5}{6}\)
\(=\left(-\dfrac{2}{17}+\dfrac{-15}{17}\right)+\left(\dfrac{3}{19}+\dfrac{16}{19}\right)+\dfrac{5}{6}\)
\(=-1+1+\dfrac{5}{6}\)
\(=\dfrac{5}{6}\)
\(\frac{3.8.15.35...99}{4.9.16.36.100}\\ =\frac{1.3.2.4.3.5.5.7....9.11}{2.2.3.3......10.10}\)
\(=\frac{\left(1.2.3....9\right).\left(3.4.5...11\right)}{\left(2.3.....10\right).\left(2.3...10\right)}=\frac{11}{10}\)