Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
A x 3 = 99x100x101
A = 99x100x101 : 3
A = 333300
S=1x2+2x3+3x4+4x5+...+98x99
3S= 1.2.3+ 2.3.3 + 3.4.3 + 4.5.3+...+98.99.3
3S= 1.2.3+ 2.3(4-1) + 3.4(5-2) + 4.5(6-3)+....+ 98.99.(100-97)
3S= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 +...+98.99.100 -97.98.99
3S= 98.99.100
S=970200:3
S= 323400
Bài làm:
\(S=1.2+2.3+3.4+...+98.99\)
\(S=\frac{1}{3}\left(1.2.3+2.3.3+3.4.3+...+98.99.3\right)\)
\(S=\frac{1}{3}\left[1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\right]\)
\(S=\frac{1}{3}\left(1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100\right)\)
\(S=\frac{98.99.100}{3}=323400\)
Vậy S = 323400
Học tốt!!!!
=1x2x3+2x3x3+...+98x99x3
=1x2x3+2x3x(4-1)+...+98x99x(100-97)
=1x2x3+2x3x4-1x2x3+...+98x99x100-97x98x99
=98x99x100
=970200
Tính
A=1x2x3+2x3x3+3x4x3+4x5x3+....+98x99x3
B=1x2+2x3+3x4+4x5+...+98x99
C=1x1+2x2+3x3+4x4+5x5+...+98x98
A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+98.99(100-97) "." la dau nhan
A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+98.99.100-97.98.99
A=1.2.3+98.99.100
A= 970206
Ta có : B = 1.2 + 2.3 + 3.4 + ..... + 98.99
=> 3B = 0.1.2 + 1.2.3 - 1.2.3 + ...... + 98.99.100
=> 3B = 98.99.100
=> B = \(\frac{98.99.100}{3}\) = 323400
=5(x1/1x2 + 1/2x3 +... +1/99x100)
= 5 x( 1/1 - 1/2 +1/2 -1/3 +... +1/99 -1/100)
= 5 x( 1 /1- 1/100)
= 5 x99/100
= 99/ 20
A= 1x2+2x3+3x4+...+98x99 A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97) = 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97) = 98x99x100
A= 1x2+2x3+3x4+...+98x99
A x 3= 1x2 x (3-0) +2x3x (4-1)+3x4 x (5-2)+...+98x99x (100-97)
= 1x2x3+2x3x4+......98x99x100- (1x2x0+ 2x3x1+....+ 98x99x97)
= 98x99x100.
1/1.2 +1/2.3 +1/3.4 +...+1/98.99 +1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100
=1-1/100=100/100-1/100=99/100
Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)
1 \(\times\) 2 \(\times\) 3 = 1 \(\times\) 2 \(\times\) 3
2 \(\times\) 3 \(\times\) 3 = 2 \(\times\) 3 \(\times\) ( 4 -1) = 2 \(\times\) 3 \(\times\) 4 - 1 \(\times\) 2 \(\times\) 3
3 \(\times\) 4 \(\times\) 3 = 3 \(\times\) 4 \(\times\) ( 5 -2) = 3 \(\times\) 4 \(\times\) 5 - 2 \(\times\) 3 \(\times\) 4
4 \(\times\) 5 \(\times\) 3 = 4 \(\times\) 5 \(\times\) ( 6- 3) = 4 \(\times\) 5 \(\times\) 6 - 3 \(\times\) 4 \(\times\) 5
..................................................................................
99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)(101-98) =99\(\times\)100\(\times\)101 - 98\(\times\)99\(\times\)100
Cộng vế với vế ta được:
1\(\times\)2\(\times\)3 + 2\(\times\)3\(\times\)3 + 3\(\times\)4\(\times\)3+ ...+99\(\times\)100\(\times\)3 = 99\(\times\)100\(\times\)101
(1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+99\(\times\)100)\(\times\)3 = 99\(\times\)100\(\times\)101
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = (99 \(\times\)100 \(\times\)101):3
1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4+...+99\(\times\)100 = 333 300