Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{-1}.3^n+5.3^{n-1}=162\)
\(3^{n-1}+5.3^{n-1}=162\)
\(3^{n-1}\left(5+1\right)=162\)
\(6.3^{n-1}=162\)
\(3^{n-1}=27=3^3\)
=> \(n-1=3\)
\(n=4\)
vậy n=4
a/ \(3^{x-1}+5.3^{x-1}=162\)
=> \(3^{x-1}\left(1+5\right)=162\)
=> \(3^{x-1}.6=162\)
=> \(3^{x-1}=\frac{162}{6}=27\)
=> \(3^{x-1}=3^3\)
=> x - 1 = 3
=> x = 4
3^x-1+5.3^x-1=162
3^x-1.(1+5)=162
3^x-1.6=162
3^x-1=162:6
3^x-1=27
3^x-1=3^3
x-1=3
x=3+1
x=4
Mình ko viết lại đầu bài nhé!
=> 3^x-1. (1+5) = 162
=>3^ x-1 . 6 = 162
=>3^x-1 =27
=>3^x-1 = 3^3
=>x-1 =3
=>x = 4
Vậy x=4
3^x-1.(1+5)=162
=>3^x-1=162:6
=>3^x-1=27=3^3
=>x-1=3
=>x=4
vậy x=4 nhé!
bài này dễ woa
\(3^{-1}.3^x+5.3^{x-1}=162\)
=> \(\frac{1}{3}.3^x+5.3^x:3=162\)
=> \(\left(\frac{1}{3}+\frac{5}{3}\right).3^x=162\)
=> 2 . 3x = 162
=> 3x = 162 : 2
=> 3x = 81
=> 3x = 34
=> x = 4
Vậy ...
\(3^{-1}.3^x+5.3^{x-1}=162\)
\(\Rightarrow3^{-1+x}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}+5.3^{x-1}=162\)
\(\Rightarrow3^{x-1}.\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}.6=162\)
\(\Rightarrow3^{x-1}=162:6=27=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
Vậy x = 4
3x-1+5.3x-1=162
=>3x-1.(1+5)=162
=>3x-1.6=162=>3x-1=162:6=27=33
=>x-1=3=>x=4
5x+5x+2=650
=>5x+5x.52=650
=>5x.(1+25)=650
=>5x.26=650=>5x=650:26=25=52
=>x=2
b: Ta có: \(x+3x-2=10\)
\(\Leftrightarrow4x=12\)
hay x=3
\(3^1.3^x+5.3^x-1=162\)
\(\Leftrightarrow3^x\left(3+5\right)=163\)
\(\Leftrightarrow3^x=\dfrac{163}{8}\)
\(\Leftrightarrow x\approx2,7\)
31.3x+5.3x−1=162
\Leftrightarrow3^x\left(3+5\right)=163⇔3x(3+5)=163
\Leftrightarrow3^x=\dfrac{163}{8}⇔3x=8163
\Leftrightarrow x\approx2,7⇔x≈2,7