Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2|+|x-8|=|x-2|+|8-x|\geq |x-2+8-x|=6$
Dấu "=" xảy ra khi $(x-2)(8-x)\geq 0$
$\Leftrightarrow 2\leq x\leq 8$
b. Vì $|2x-1|\geq 0; |y-3x|\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$|2x-1|=|y-3x|=0$
$\Leftrightarrow x=\frac{1}{2}; y=\frac{3}{2}$
b) Ta có: \(\left|2x-1\right|\ge0\forall x\)
\(\left|y-3x\right|\ge0\forall x,y\)
Do đó: \(\left|2x-1\right|+\left|y-3x\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3x=\dfrac{3}{2}\end{matrix}\right.\)
MỌI NGƯỜI ƠI ! CÓ AI CÒN RẢNH RANG GIÚP BÀI TỚ VỚI NHÉ ! HUHU MAI TỚ PHẢI NỘP BÀI RỒI
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a) |x+1|+|x+5|=4
\(\Rightarrow x+1+x+5=\pm4\)
\(x+1+x+5=4\)
\(\Rightarrow x^2+1+5=4\)
\(x^2+6=4\)
\(x^2=4-6\)
\(\Rightarrow x^2=-2\)
\(x+1+x+5=-4\)
\(x^2+6=-4\)
\(x^2=-8\)
b đâu bạn