Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường ô tô đi được trong chuyển động thẳng chậm dần đều được tính theo công thức
s = v 0 t + (a t 2 )/2
Thay số vào ta được phương trình bậc 2 ẩn t: 125 = 15t − (0,5 t 2 )/2 hay t 2 − 60t + 500 = 0
Giải ra ta được hai nghiệm t 1 = 50 s và t 2 = 10 s.
Chú ý: ta loại nghiệm t 1 vì thời gian kể từ lúc bắt đầu hãm phanh đến khi dừng lại hẳn (v = 0) là
Do đó khoảng thời gian để ô tô chạy thêm được 125 m kể từ khi bắt đầu hãm phanh là t 2 = 10 s.
Chọn trục tọa độ trùng với quỹ đạo chuyển động thẳng của ô tô, chiều dương của trục hướng theo chiều chuyển động. Chọn mốc thời gian là lúc ô tô bắt đầu hãm phanh.
Theo công thức liên hệ giữa quãng đường đi được với vận tốc và gia tốc trong chuyển động thẳng chậm dần đều:
v 2 - v 0 2 = 2as
Ta suy ra công thức tính gia tốc của ô tô:
Dấu – của gia tốc a chứng tỏ ô tô chuyển động thẳng chậm dần đều có chiều dương đã chọn trên trục tọa độ, tức là ngược chiều với vận tốc ban đầu v 0
Chọn đáp án A
v t 2 − v 0 2 = 2 a s ⇒ a = − v 0 2 2 s = − 0 , 5 m / s 2