Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1+3^2)+(3^4+3^6)+...+(3^48+3^50)
A=1(1+3^2)+3^4(1+3^2)+...+3^48(1+3^2)
A=1.10+3^4.10+...+3^48.10
A=10(1+3^4+...+3^48)
A=2.5(1+3^4+...+3^48)
=>A chia hết cho 2 và 5 nên 8.A cũng chia hết cho 2 và 5
A<1-1/2+1/2-1/3+...+1/8-1/9=1-1/9=8/9
A>1/2-1/3+1/3-1/4+...+1/9-1/10=1/2-1/10=2/5
=>2/5<A<8/9
S=1+7+7^2+7^3+...+7^100+7^101
=(1+7)+7^2(1+7)+...+7^100(1+7)
=8+7^2.8+...+7^100.8
=8.(1+7^2+...+7^100) chia hết cho 8
Vậy S chia hết cho 8
a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5
S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)
S=20+4^2*20+...+4^98
S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)
b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6
S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
S=6+2^2.*6+...+2^2008
S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6
mình nhầm đề bài 3 các bn ah
đề 3 là chứng tỏ 8^8+2^20 chia hết cho 17 nha
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)