Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có GTLN thì 2(x-1)2 + 3 phải bé nhất
mà 2(x-1)2 luôn > hoặc = 0
=> A có GTLN thì 2(x-1)2 + 3 = 3
=> x=1
GTLN of A là 1/3 khi và chỉ khi x = 1
để B có GTLN thì 17-x > 0 và bé nhất
=> 17-x = 1
=> x = 16
GTLN của B = 1 khi và chỉ khi x=16
1) \(A=\left(2x^2+1\right)^4-3\ge0-3=-3\) (do \(\left(2x^2+1\right)^4\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(2x^2+1\right)=0\Leftrightarrow2x^2=-1\Leftrightarrow x^2=-\frac{1}{2}\) (vô lí)
Vậy đề sai ~v (hay là tui làm sai ta)
Vì \(\left(2x-3\right)^2\ge0\forall x\)nên :
\(C=\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
Vậy \(C_{min}=\frac{-4}{5}\Leftrightarrow x=\frac{3}{2}\)
a) Ta có (2x - 1)2 > 0 => (2x - 1)2 - 4 > - 4
Vậy min A = - 4 <=> 2x - 1 = 0 <=> 2x = 1 <=> x = \(\frac{1}{2}\)
b) Ta có (3x + 2)2 > 0 => - (3x + 2)2 < 0 => 5 - (3x + 2)2 < 5
Vậy max B = 5 <=> 3x + 2 = 0 <=> 3x = - 2 <=> x = \(\frac{-2}{3}\)
c) Ta có (x - y)4 > 0; (y - 3)2 > 0 => (x - y)4 + (y - 3)2 > 0 => (x - y)4 + (y - 3)2 + 12 > 12
Vậy min C = 12 <=> x - y = 0 và y - 3 = 0
y - 3 = 0 <=> y = 3
x - y = 0 <=> x - 3 = 0 <=> x = 3
a: \(A=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}=\dfrac{-25}{60}=\dfrac{-50}{120}\)
b: \(B=\dfrac{3}{4}\cdot\dfrac{1}{12}\cdot\dfrac{2}{3}=\dfrac{1}{24}=\dfrac{5}{120}\)
c: \(C=\dfrac{5}{4}\cdot\dfrac{1}{15}\cdot\dfrac{2}{5}=\dfrac{2}{60}=\dfrac{1}{30}=\dfrac{4}{120}\)
\(D=-3\cdot\dfrac{-7}{12}\cdot\dfrac{1}{-7}=-\dfrac{1}{4}=\dfrac{-30}{120}\)
Vì -50<-30<4<5
nên A<D<B<C