Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P=2x^2+5y^2+4xy+8x-4y+15\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)
Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)
Vậy...
b, \(C=2x^2+4xy+4y^2-3x-1\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
sau đó giải tương tự câu a nhé
\(C=2x^2+4y^2+4xy-3x-1\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{13}{4}\)
\(=\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\)
Ta có : \(\left\{{}\begin{matrix}\left(x+2y\right)^2\ge0\\\left(x-\dfrac{3}{2}\right)^2\ge0\end{matrix}\right.\) \(\Leftrightarrow P\ge-\dfrac{13}{4}\)
Dấu "=" xảy ra khi :
\(\left\{{}\begin{matrix}\left(x+2y\right)^2=0\\\left(x-\dfrac{3}{2}\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(C_{Min}=-\dfrac{13}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
C= 2x2 +4y2+4xy -3x -1
Mk viết nhầm đề các bạn thông cảm nhé
d) D = x4 - 6x2 + 10
D = (X2)2 - 2. x2. 3 + 32 + 1
D = (x2 - 3)2 + 1
(x2 - 3)2 >= 0 với mọi x
(x2 - 3)2 + 1 >=1 với moi5 x
Vậy GTNN của D là 1
\(A=2x^2+4y^2+4xy+2x+4y+9\)
\(=2\left(x^2+x\left(2y+1\right)+\dfrac{\left(2y+1\right)^2}{4}\right)-\dfrac{\left(2y+1\right)^2}{2}+4y^2+4y+9\)
\(=2\left(x+\dfrac{2y+1}{2}\right)^2-2y^2-2y-\dfrac{1}{2}+4y^2+4y+9\)
\(=2\left(x+\dfrac{2y+1}{2}\right)^2+2y^2+2y+\dfrac{17}{2}\)
\(=2\left(x+\dfrac{2y+1}{2}\right)^2+2\left(y+\dfrac{1}{2}\right)^2+8\ge8\)
Dấu '' = '' xảy ra khi: \(\Leftrightarrow\left\{{}\begin{matrix}y+\dfrac{1}{2}=0\\x+\dfrac{2y+1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Vậy: Min A = 8 khi \(x=0;y=-\dfrac{1}{2}\)
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
\(I=3x^2+4xy+4y^2+5x=\left(2x^2+5x+\dfrac{25}{8}\right)+\left(x^2+4xy+4y^2\right)-\dfrac{25}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\left(x+2y\right)^2-\dfrac{25}{8}\ge-\dfrac{25}{8}\)
\(minI=-\dfrac{25}{8}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-\dfrac{5}{4}\\y=\dfrac{5}{8}\end{matrix}\right.\)
\(2x^2+4y^2+4xy-3x-1\)
\(=\left(x^2+4xy+2y^2\right)+\left(x^2-3x-1\right)\)
\(=\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\)
Ta có \(\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2y\right)^2+\left(x-\dfrac{3}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\x+2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy GTNN của biểu thức là \(-\dfrac{13}{4}\) khi \(x=\dfrac{3}{2}\) và \(y=-\dfrac{3}{4}\)