K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggyyyyyyyyyyyyyyyyyyyyyyyy

4 tháng 2 2016

xuống điểm âm

1 tháng 4 2022

cho mik hỏi rằng là 3x2 + 4x = 0 hay  3x2 + 4x = 0

1 tháng 4 2022

 3x2 + 4x = 0

21 tháng 3 2017

2(x2 – 2x)2 + 3(x2 – 2x) + 1 = 0 (1)

Đặt x2 – 2x = t,

(1) trở thành : 2t2 + 3t + 1 = 0 (2).

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm t1 = -1; t2 = -c/a = -1/2.

+ Với t = -1 ⇒ x2 – 2x = -1 ⇔ x2 – 2x + 1 = 0 ⇔ (x – 1)2 = 0 ⇔ x = 1.

11 tháng 7 2021

a) \(\left(x^2-3x\right)\left(x^2+7x+10\right)=216\Rightarrow x\left(x-3\right)\left(x+2\right)\left(x+5\right)=216\)

\(\Rightarrow x\left(x+2\right)\left(x-3\right)\left(x+5\right)=216\Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)=216\)

Đặt \(t=x^2+2x\Rightarrow\) pt trở thành \(t\left(t-15\right)=216\Rightarrow t^2-15t-216=0\)

\(\Rightarrow\left(t+9\right)\left(t-24\right)=0\Rightarrow\left[{}\begin{matrix}t=-9\\t=24\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+2x=-9\\x^2+2x=24\end{matrix}\right.\)

\(TH_1:x^2+2x=-9\Rightarrow x^2+2x+9=0\Rightarrow\left(x+1\right)^2+8=0\) (vô lý)

\(TH_2:x^2+2x=24\Rightarrow x^2+2x-24=0\Rightarrow\left(x-4\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) \(\left(2x^2-7x+3\right)\left(2x^2+x-3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x-1\right)\left(x-1\right)\left(2x+3\right)+9=0\)

\(\Rightarrow\left(x-3\right)\left(2x+3\right)\left(x-1\right)\left(2x-1\right)+9=0\)

\(\Rightarrow\left(2x^2-3x-9\right)\left(2x^2-3x+1\right)+9=0\)

Đặt \(t=2x^2-3x-9\Rightarrow\) pt trở thành \(t\left(t+10\right)+9=0\)

\(\Rightarrow t^2+10t+9=0\Rightarrow\left(t+1\right)\left(t+9\right)=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-9\end{matrix}\right.\)

\(TH_1:t=-1\Rightarrow2x^2-3x-9=-1\Rightarrow2x^2-3x-8=0\)

\(\Delta=\left(-3\right)^2-4\left(-8\right).2=73\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3-\sqrt{73}}{4}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{73}}{4}\end{matrix}\right.\)

\(TH_2:t=-9\Rightarrow2x^2-3x-9=-9\Rightarrow2x^2-3x=0\Rightarrow x\left(2x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)

 

13 tháng 10 2017

 a)  2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )

Đặt  x 2   –   2 x   =   t ,

(1) trở thành :   2 t 2   +   3 t   +   1   =   0   ( 2 ) .

Giải (2) :

Có a = 2 ; b = 3 ; c = 1

⇒ a – b + c = 0

⇒ (2) có nghiệm    t 1   =   - 1 ;   t 2   =   - c / a   =   - 1 / 2 .

+ Với t = -1  ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

(1) trở thành:  t 2   –   4 t   +   3   =   0   ( 2 )

Giải (2):

Có a = 1; b = -4; c = 3

⇒ a + b + c = 0

⇒ (2) có nghiệm  t 1   =   1 ;   t 2   =   c / a   =   3 .

+ t = 1 ⇒ x + 1/x = 1  ⇔   x 2   +   1   =   x   ⇔   x 2   –   x   +   1   =   0

Có a = 1; b = -1; c = 1  ⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . 1   =   - 3   <   0

Phương trình vô nghiệm.

Giải bài 59 trang 63 SGK Toán 9 Tập 2 | Giải toán lớp 9

5 tháng 3 2022

\(2x^2-4x+2=0\\ \Leftrightarrow2\left(x^2-2x+1\right)=0\\ \Leftrightarrow2\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)^2=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)

5 tháng 3 2022

\(2x^2-4x+2=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left\{{}x=1}\)

5 tháng 3 2022

x=1

\(2x^2-4x+2=0\)

\(\Leftrightarrow2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy....

22 tháng 9 2017

 a)  9 x 4 − 10 x 2 + 1 = 0 ( 1 )

Đặt x 2 = t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  9 t 2 − 10 t + 1 = 0 ( 2 )

Giải (2):

Có a = 9 ; b = -10 ; c = 1

⇒ a + b + c = 0

⇒ Phương trình (2) có nghiệm  t 1 = 1 ; t 2 = c / a = 1 / 9

Cả hai nghiệm đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x 2 = 1  ⇒ x = 1 hoặc x = -1.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình (1) có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

5 x 4 + 2 x 2 - 16 = 10 - x 2 ⇔ 5 x 4 + 2 x 2 - 16 - 10 + x 2 = 0 ⇔ 5 x 4 + 3 x 2 - 26 = 0

Đặt x 2   =   t , điều kiện t ≥ 0.

Khi đó (1) trở thành :  5 t 2 + 3 t − 26 = 0 ( 2 )

Giải (2) :

Có a = 5 ; b = 3 ; c = -26

⇒ Δ = 3 2 − 4.5 ⋅ ( − 26 ) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu điều kiện chỉ có t 1   =   2  thỏa mãn

+ Với t = 2 ⇒ ⇒ x 2 = 2  ⇒ x = √2 hoặc x = -√2.

Vậy phương trình (1) có tập nghiệm S = {-√2; √2}

c)  0 , 3 x 4 + 1 , 8 x 2 + 1 , 5 = 0 ( 1 )

Đặt  x 2 = t , điều kiện t ≥ 0.

Khi đó, (1) trở thành :  0 , 3 t 2 + 1 , 8 t + 1 , 5 = 0 ( 2 )

Giải (2) :

có a = 0,3 ; b = 1,8 ; c = 1,5

⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm  t 1 = − 1  và t 2 = − c / a = − 5

Cả hai nghiệm đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ 0.

Quy đồng, khử mẫu ta được :

2 x 4 + x 2 = 1 − 4 x 2 ⇔ 2 x 4 + x 2 + 4 x 2 − 1 = 0 ⇔ 2 x 4 + 5 x 2 − 1 = 0 ( 1 )

Đặt t = x 2 , điều kiện t > 0.

Khi đó (1) trở thành :  2 t 2 + 5 t - 1 = 0 ( 2 )

Giải (2) :

Có a = 2 ; b = 5 ; c = -1

⇒ Δ = 5 2 − 4.2 ⋅ ( − 1 ) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đối chiếu với điều kiện thấy có nghiệm t 1  thỏa mãn.

Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 37 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9