Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(x^2+x+2\) là a ; đặt \(x+1\)là b
\(\Rightarrow a+b=x^2+x+2+x+1\)\(=x^2+2x+3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)
\(\Rightarrow3a^2b+3ab^2=0\)\(\Rightarrow3ab\left(a+b\right)=0\)\(\Rightarrow\)\(a=0\)hoặc \(b=0\)hoặc \(a+b=0\)
* nếu a = 0 \(\Rightarrow\) \(x^2+x+2=0\)( vô lí vì luôn dương, cái này dễ chứng minh nha)
* nếu b = 0 \(\Rightarrow x+1=0\Rightarrow x=-1\)
* nếu a + b = 0 \(\Rightarrow x^2+2x+3=0\)(cái này cũng luôn dương nhé)
Vậy phương trình có 1 nghiệm là x = -1
chúc bạn học tốt nha <3
Ta có : \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2-8x+9x-6=2x-3x^2-2+3x\)
\(\Leftrightarrow12x^2-8x+9x-6-2x+3x^2+2-3x=0\)
\(\Leftrightarrow15x^2-4x-4=0\)
\(\Leftrightarrow15x^2-10x+6x-4=0\)
Lỗi :vvvv
\(\Leftrightarrow10x\left(\dfrac{3}{2}x-1\right)+4\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left(10x+4\right)\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(=\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)
\(\Rightarrow5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)\left(x-2\right)=16\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow5x^2-35x+60+5x^2-20x+20=16x^2-96x+128\)
\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)
\(\Leftrightarrow-6x^2+41x-48=0\)
......
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)
\(\Leftrightarrow\frac{5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)^2}{5\left(x-2\right)\left(x-4\right)}=\frac{16.\left(x-2\right)\left(x-4\right)}{5\left(x-2\right)\left(x-4\right)}\)
\(\Rightarrow5x^2-20x-15x+60+5x^2-20x+20=16x^2-64x-32x+128\)
\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow x=\frac{16}{3};x=\frac{3}{2}\)
\(x^2-4x-1=0\)
\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)
\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)
\(\Rightarrow x-2=\pm\sqrt{5}\)
Tự giải tiếp nha ...
(x2 _ 1)3 _ (x4 + x2 + 1) (x2 _ 1)
= x6 _ 1 _ ( x6 + x4 + x2 _ x4 _ x2 _ 1)
= x6 _ 1 _ x6 _ x4 _ x2 + x4 + x2 + 1
= 0
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
3x(x-1)=1-x
<=> 3x(x-1) +x-1=0
<=> (x-1)(3x+1)=0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Vậy...
Bài 1 :
(3xy-1/2).(4x2y-6xy2+1) = 12x3y2 - 18x2y3 + 3xy - 2x2y + 3xy2 - 1/2
Bài 4:
\(4x^2+8x+7=\left(4x^2+8x+4\right)+3=\left(2x+2\right)^2+3\ge3>0 \)
\(\frac{2}{x-2}-\frac{3}{x+2}=\frac{x+1}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{x^2-4}=0\)
\(\Leftrightarrow\frac{2}{x-2}-\frac{3}{x+2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x+4-3x+6-x-1}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{-2x-9}{\left(x-2\right)\left(x+2\right)}=0\)
=> -2x-9=0
<=> -2x=9
<=> \(x=\frac{-9}{2}\left(tmđk\right)\)