Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\left(2x-15\right)^3\left(2x-15-1\right)\left(2x-15+1\right)=0\)
=> \(\left(2x-15\right)^3\left(2x-16\right)\left(2x-14\right)=0\)
=> \(\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy ...
a) \(2x\left(x-3\right)+6\left(3x-3\right)=0\)
\(\Leftrightarrow2x^2-6x+18x-18=0\)
\(\Leftrightarrow2x^2+12x-18=0\)
Mà \(2x^2\ge0\)
\(\Rightarrow x\in\varnothing\)
a)=>2x^2-6x+18x-18=0 b)=>6x^2-15x-75-30x =????
=>2x^2+12x=0+18
=>2x^2+12x=18
=>x.(2x+12)=18 (tự làm phần còn lai)
1.
b) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x.1+3^x.3^2=2430\)
\(\Rightarrow3^x.\left(1+3^2\right)=2430\)
\(\Rightarrow3^x.10=2430\)
\(\Rightarrow3^x=2430:10\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=15\\2x-15=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=15:2\\2x-15=1\\2x-15=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\2x=16\\2x=14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}.\)
Chúc bạn học tốt!
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-15=0\\2x-15=1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=15\\2x=16\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{15}{2}\\x=8\end{array}\right.\)
1: Ta có: \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x-3x^2+x=0\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow-2x\left(x+1\right)=0\)
Vì -2≠0
nên \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: x∈{0;-1}
2) Ta có: \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x-12+x=0\)
\(\Leftrightarrow11x-2=0\)
\(\Leftrightarrow11x=2\)
hay \(x=\frac{2}{11}\)
Vậy: \(x=\frac{2}{11}\)
3) Ta có: \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}-5=0\)
\(\Leftrightarrow\frac{-13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow\frac{4}{3}x=\frac{-13}{3}\)
hay \(x=\frac{-13}{3}:\frac{4}{3}=\frac{-13}{4}\)
Vậy: \(x=\frac{-13}{4}\)
4) Ta có: \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{5}\\x-\frac{4}{5}=\frac{-3}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{5}\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{5};\frac{7}{5}\right\}\)
1. \(2x+x\left(x-5\right)=3x^2-x\)
\(\Leftrightarrow2x+x^2-5x=3x^2-x\)
\(\Leftrightarrow\left(2x-5x+x\right)+\left(x^2-3x^2\right)=0\)
\(\Leftrightarrow-2x-2x^2=0\)
\(\Leftrightarrow-2x\left(1+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2. \(15-5\left(1-2x\right)=12-x\)
\(\Leftrightarrow15-5+10x=12-x\)
\(\Leftrightarrow\left(15-5-12\right)+\left(10x+x\right)=0\)
\(\Leftrightarrow-2+11x=0\)
\(\Leftrightarrow11x=2\Leftrightarrow x=\frac{2}{11}\)
3. \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
\(\Leftrightarrow\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\Leftrightarrow\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}-5\right)-\left(\frac{1}{3}x+x\right)=0\)
\(\Leftrightarrow-\frac{13}{3}-\frac{4}{3}x=0\)
\(\Leftrightarrow-\frac{4}{3}x=\frac{13}{3}\Leftrightarrow x=-\frac{13}{4}\)
4. \(\left|x-\frac{4}{5}\right|=\frac{3}{5}\)
\(\Rightarrow x-\frac{4}{5}=-\frac{3}{5}\) hoặc \(x-\frac{4}{5}=\frac{3}{5}\)
\(TH1:x-\frac{4}{5}=-\frac{3}{5}\Rightarrow x=\frac{1}{5}\)
\(TH2:x-\frac{4}{5}=\frac{3}{5}\Rightarrow x=\frac{7}{5}\)
`(2x-15)^5 =(2x-15)^3`
`=>(2x-15)^5 -(2x-15)^3=0`
`=> (2x-15)^3 [(2x-15)^2 -1]=0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=0\\2x-15=1\\2x-15=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=15\\2x=16\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right.\)