K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2021

\(6sinx.cos4x+4sin^2x-8sinx+3cos4x+2sinx-4+4cos^2x=3\)

\(\Leftrightarrow6sinx.cos4x-6sinx+3cos4x-3=0\)

\(\Leftrightarrow cos4x\left(2sinx+1\right)-\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(cos4x-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 7 2017

25 tháng 9 2018

19 tháng 1 2017

Đáp án C

Vậy 2 pt trên có 2 họ nghiệm chung là:

26 tháng 3 2019

3 tháng 9 2019

Chọn B

Sử dụng các công thức giải phương trình lượng giác cơ bản:

NV
21 tháng 8 2021

Với \(cosx=0\) ko phải nghiệm

Với \(cosx\ne0\)

\(\Rightarrow\left(2sin5x-1\right)\left(2cos2x.cosx-cosx\right)=2sinx.cosx\)

\(\Leftrightarrow\left(2sin5x-1\right)\left(cos3x+cosx-cosx\right)=sin2x\)

\(\Leftrightarrow cos3x\left(2sin5x-1\right)=sin2x\)

\(\Leftrightarrow2sin5x.cos3x-cos3x=sin2x\)

\(\Leftrightarrow sin8x+sin2x-cos3x=sin2x\)

\(\Leftrightarrow sin8x=cos3x=sin\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow...\)

21 tháng 8 2021

Cái em cần là cái "......."

Loại nghiệm mệt lắm sensei gianroi

2 tháng 3 2019