Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6sinx.cos4x+4sin^2x-8sinx+3cos4x+2sinx-4+4cos^2x=3\)
\(\Leftrightarrow6sinx.cos4x-6sinx+3cos4x-3=0\)
\(\Leftrightarrow cos4x\left(2sinx+1\right)-\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(cos4x-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos4x=1\\sinx=-\dfrac{1}{2}\end{matrix}\right.\)
Chọn B
Sử dụng các công thức giải phương trình lượng giác cơ bản:
Với \(cosx=0\) ko phải nghiệm
Với \(cosx\ne0\)
\(\Rightarrow\left(2sin5x-1\right)\left(2cos2x.cosx-cosx\right)=2sinx.cosx\)
\(\Leftrightarrow\left(2sin5x-1\right)\left(cos3x+cosx-cosx\right)=sin2x\)
\(\Leftrightarrow cos3x\left(2sin5x-1\right)=sin2x\)
\(\Leftrightarrow2sin5x.cos3x-cos3x=sin2x\)
\(\Leftrightarrow sin8x+sin2x-cos3x=sin2x\)
\(\Leftrightarrow sin8x=cos3x=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow...\)