Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d = (2n+5;3n+7) (d thuộc N)
=> (2n+5) chia hết cho d và (3n +7) chia hết cho d
=> 3.(2n + 5) - 2.(3n + 7) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(2n + 5 ; 3n + 7) = 1
=> Phân số 2n+5/3n+7 tối giản với mọi n thuộc N
ko chắc, bn tham khảo
Học tốt
goi d la uoc nguyen to cua 2n+5 va 3n+7
Suy ra 2n+5 va 3n+7 chia het cho d
Suy ra 3(2n+5) va 2(3n+7) chia het cho d
Suy ra 6n+15 va 6n+14 chia het cho d
Suy ra 6n+15-6n+14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d thuoc Ư(1)=1
Suy ra 2n+5/3n+7 la phan so toi gian
bn tham khảo bài của bn này nhé: Câu hỏi của donhatha - Toán lớp 6 - Học trực tuyến OLM
Đặt \(d=\left(2n+5,3n+7\right)\).
Suy ra
\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow3\left(2n+5\right)-2\left(3n+7\right)=1⋮d\Leftrightarrow d=1\).
Vậy ta có đpcm.
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
\(\frac{2n+5}{3n+7}\) hả bạn