Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Vì: \(Ix+\frac{1}{2}I\ge0\)
\(Iy-\frac{3}{4}I\ge0\)
\(Iz-1I\ge0\)
Mà \(Ix+\frac{1}{2}I+Iy-\frac{3}{4}I+Iz-1I=0\)
=> \(x+\frac{1}{2}=0\) và \(y-\frac{3}{4}=0\) và \(z-1=0\)
<=> \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
Vậy \(x=-\frac{1}{2}\) và \(y=\frac{3}{4}\) và \(z=1\)
phần B lm tương tự nha
A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)
\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)
Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28
đến đây tự làm
c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)
\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\) và \(\left(y+0,4\right)^{100}=0\) và \(\left(z-3\right)^{678}=0\)
+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)
+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)
+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1}{5};-0,4;3\right)\)
Ta có: \(\frac{-2\left(x-3\right)}{5}=\frac{y+4}{-4}=\frac{3\left(z-5\right)}{2}\)\(\Leftrightarrow\frac{x-3}{\frac{5}{-2}}=\frac{y+4}{-4}=\frac{z-5}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x-3}{\frac{5}{-2}}=\frac{y+4}{-4}=\frac{z-5}{\frac{2}{3}}=\frac{x-3-y-4+z-5}{\frac{5}{-2}-\left(-4\right)+\frac{2}{3}}=\frac{-1-3-4-5}{\frac{13}{6}}=\frac{-13}{\frac{13}{6}}=-1.6=-6\)
\(\Rightarrow\hept{\begin{cases}\frac{-2\left(x-3\right)}{5}=-6\\\frac{y+4}{-4}=-6\\\frac{3\left(z-5\right)}{2}=-6\end{cases}}\Rightarrow\hept{\begin{cases}-2\left(x-3\right)=-30\\y+4=24\\3\left(z-5\right)=-12\end{cases}}\Rightarrow\hept{\begin{cases}x-3=15\\y=20\\z-5=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=18\\y=20\\z=1\end{cases}}\)
Vậy...
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
\(2.\left(x+y\right)=5.\left(y+z\right)=3.\left(z+x\right)\)
\(\Rightarrow\text{ }\frac{2.\left(x+y\right)}{30}=\frac{5.\left(y+z\right)}{30}=\frac{3.\left(z+x\right)}{30}\)
\(\Rightarrow\text{ }\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\text{ }\left(1\right)\)
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\text{ }\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\text{ }\frac{y-z}{5}=\frac{x-y}{4}\)
Theo đề ta có:
\(2\left(x+y\right)=5\left(y+z\right)=3\left(x+z\right)\)
\(\Rightarrow\)\(\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
* \(\frac{y+z}{6}=\frac{x+z}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{x+z-y-z}{4}=\frac{x-y}{4}\) \(\left(1\right)\)
* \(\frac{x+y}{15}=\frac{x+z}{10}=\frac{x+y-\left(x+z\right)}{15-10}=\frac{x+y-x-z}{5}=\frac{y-z}{5}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)ta có:
\(\frac{x-y}{4}=\frac{y-z}{5}\)