K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

\(2a=4b\Rightarrow\frac{a}{10}=\frac{b}{5}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{5}=\frac{c}{3}=\frac{a+2b-3c}{10+2.5-3.3}=\frac{99}{11}=9\)

a=90

b=45

c=27

28 tháng 11 2017

chuyển kiểu gì vậy

3 tháng 8 2020

\(a=\frac{5}{3}b\)\(c=\frac{5}{6}b\)

\(\Rightarrow3.\frac{5}{6}b-2.\frac{5}{3}b=10\)

\(\Leftrightarrow\frac{-5}{6}b=10\)

\(\Leftrightarrow b=-12\)

b, Tương tự

3 tháng 8 2020

Bài làm:

a) \(3a=5b=6c\)

\(\Leftrightarrow\frac{a}{10}=\frac{b}{6}=\frac{c}{5}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{10}=\frac{b}{6}=\frac{c}{5}=\frac{3c-2a}{15-20}=\frac{10}{-5}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-20\\b=-12\\c=-10\end{cases}}\)

b) Ta có: \(3a=4b\Leftrightarrow\frac{a}{4}=\frac{b}{3}\Leftrightarrow\frac{a}{20}=\frac{b}{15}\left(1\right)\)

và \(6b=5c\Leftrightarrow\frac{b}{5}=\frac{c}{6}\Leftrightarrow\frac{b}{15}=\frac{c}{18}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}\)

Áp dụng t/c của dãy tỉ số bằng nhau:

\(\frac{a}{20}=\frac{b}{15}=\frac{c}{18}=\frac{2c-3b+a}{36-45+20}=\frac{-22}{11}=-2\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-30\\c=-36\end{cases}}\)

1 tháng 11 2021

Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)

Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)

Khi đó a2 + b2 + c2 = 661

<=> (20k)2 + (15k)2 + (6k)2 = 661

<=> 661k2 = 661

<=> k2 = 1

<=> k = \(\pm1\)

Khi k = 1 => a = 20 ; b = 15 ; c = 6

Khi k = -1 => a = -20 ; b = - 15 ; c = -6

1 tháng 11 2021

Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)

=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)

6 tháng 12 2016

Giải:

Ta có: \(2a=4b\Rightarrow a=2b\Rightarrow\frac{a}{1}=\frac{b}{2}\Rightarrow\frac{a}{5}=\frac{b}{10}\)

\(3b=5c\Rightarrow\frac{b}{5}=\frac{c}{3}\Rightarrow\frac{b}{10}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{5}=\frac{b}{10}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{5}=\frac{b}{10}=\frac{c}{6}=\frac{2b}{20}=\frac{3c}{18}=\frac{a+2b-3c}{5+20-18}=\frac{99}{7}\)

+) \(\frac{a}{5}=\frac{99}{7}\Rightarrow a=\frac{495}{7}\)

+) \(\frac{b}{10}=\frac{99}{7}\Rightarrow b=\frac{990}{7}\)

+) \(\frac{c}{6}=\frac{99}{7}\Rightarrow c=\frac{594}{7}\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(\frac{495}{7};\frac{990}{7};\frac{594}{7}\right)\)

 

3a+4b-3c=4Tìm GTNN của biểu thức : A = 2a+3b-4c? ... Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min ... T = a −2 b 2 a − b +2 a −3 b 2 a + b. Đọc tiếp. ..... cho a và b là hai số thực thỏa mãn 4a + b = 5ab và 2a>b>0.

16 tháng 7 2016

a) \(3a=4b\Rightarrow\frac{a}{4}=\frac{b}{3}\)

Áp dụng dãy tỉ số bằng nhau , có : \(\frac{a}{4}=\frac{b}{3}=\frac{b-a}{3-4}=\frac{5}{-1}=-5\)

\(\Rightarrow a=-5\cdot4=-20\)

\(\Rightarrow b=-5\cdot3=-15\)

b) Từ \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{6}=\frac{b}{4}\) (1)

Tương tự : \(3b=4c\Rightarrow\frac{b}{4}=\frac{c}{3}\)(2) ;     

Từ (1) và (2) ta có : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a-b+c}{6-4+3}=\frac{35}{5}=7\)

\(\Rightarrow a=7\cdot6=42\)

\(\Rightarrow b=7\cdot4=28\)

\(\Rightarrow c=7\cdot3=21\)

c) \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{a}{40}=\frac{b}{48}\)  ;   \(\frac{b}{8}=\frac{c}{7}\Rightarrow\frac{b}{48}=\frac{c}{42}\)

\(\Rightarrow\frac{a}{40}=\frac{b}{48}=\frac{c}{42}\)

Áp dụng t/c dãy tỉ số = nhau : \(\frac{a}{40}=\frac{b}{48}=\frac{c}{42}=\frac{a+b-c}{40+48-42}=\frac{69}{46}=\frac{3}{2}\)

\(\Rightarrow a=\frac{3}{2}.40=60\)

\(\Rightarrow b=\frac{3}{2}.48=72\)

\(c=\frac{3}{2}.42=63\)

16 tháng 7 2016

63 nha ban minh chac luon

14 tháng 2 2019

CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU

a) ta có: 2a = 3b; 5b = 7c

\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)

VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)

PHẦN SAU TỰ LÀM^-^

c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:

   \(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)

PHẦN SAU TỰ LÀM^-^

Ta có 2a=3b <=> a=\(\frac{3b}{2}\) 
Lại có 3a+4b=46
Do đó 3x\(\frac{3b}{2}\) +4b=46
<=>\(\frac{9b}{2}\) +\(\frac{8b}{2}\) =46
<=>17b=46x2
<=>b=\(\frac{92}{17}\) 

=>a=3x\(\frac{92}{17}\) :2 
<=>a=\(\frac{138}{17}\)

15 tháng 12 2019

\(\text{Ta có: }2a=3b\Rightarrow a=\frac{3b}{2}\)
\(\Rightarrow3a+4b=3.\frac{3b}{2}+4b=46\)

\(\Rightarrow\frac{9}{2}b+4b=46\)

\(\Rightarrow b.\left(\frac{9}{2}+4\right)=46\)

\(\Rightarrow b.\frac{17}{2}=46\)

\(\Rightarrow b=46:\frac{17}{2}=\frac{92}{17}\)

Từ đây rồi tính  đc a