Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(3^2+2^4-\left(6^8:6^6-6^2\right)< 5^x< 125\)
\(=9+16-\left(6^{8-6}-36\right)< 5^x< 5^3\)
\(=25-\left(6^2-36\right)< 5^x< 5^3\)
\(=25-\left(36-36\right)< 5^x< 5^3\)
\(=25-0< 5^x< 5^3\)
\(=25< 5^x< 5^3\)
\(=5^2< 5^x< 5^3\)
Vì \(5^2=25\) và \(5^3=125\) nên \(x\) không thể thỏa mãn đề bài
⇒ \(x\) không thỏa mãn đề bài
3.5x + 4.5x+1 + 2.5x+2 = 1825
5x.(3+4.5+2.52) = 1825
=> 5x.73 = 1825
=> 5x = 25 = 52
=> x = 2
a)1+3+5+7+9+...+x=1600
=>[(x-1):2+1].(x+1)/2=1600
=>(1/2.x-1/2+1).(x+1)=1600:1/2
=>(1/2.x-1/2+1).(x+1)=3200
=>(x+1)2.1/2=3200
=>(x+1)2 =3200:1/2
=>(x+1)2=6400
=>x+1=80
=>x=80-1=79
Ta có:
\(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2.3^2}{5}=\frac{18}{5}\)
\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)
Ta có:\(5^{x+4}-3\cdot5^{x+3}=2\cdot5\)
\(5^x\cdot5^4-3\cdot5^x\cdot5^3=10\)
\(5^x\left(5^4-3\cdot5^3\right)=10\)
\(5^x\cdot250=10\)
\(5^x=10:250\)
\(5^x=\frac{1}{25}\)
\(5^x=5^{-2}\)
\(\Rightarrow x=-2\)
\(5^{x+4}-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.5-3.5^{x+3}=2.5\)
\(\Rightarrow5^{x+3}.\left(5-3\right)=2.5\)
\(\Rightarrow5^{x+3}.2=2.5\)
\(\Rightarrow5^{x+3}=5\)
\(\Rightarrow x+3=1\)
\(\Rightarrow x=-2\)
Vậy \(x=-2\)
a) \(2.5^2.3^2+\left\{\left[2.5^3-\left(5x+4\right).5\right]:\left(2^2.3.5\right)\right\}=453\)
\(2.25.9+\left\{\left[2.125-\left(5x+4\right).5\right]:\left(4.3.5\right)\right\}=453\)
\(50.9+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(450+\left\{\left[250-\left(5x+4\right).5\right]:60\right\}=453\)
\(\left[250-\left(5x+4\right).5\right]:60=453-450\)
\(\left[250-\left(5x+4\right).5\right]:60=3\)
\(250-\left(5x+4\right).5=3.60\)
\(250-\left(5x+4\right).5=180\)
\(\left(5x+4\right).5=250-180\)
\(\left(5x+4\right).5=70\)
\(5x+4=70:5\)
\(5x+4=14\)
\(5x=14-4\)
\(5x=10\)
\(x=10:5\)
\(x=2\)
Vậy \(x=2\)
b) \(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(-2\right)+\frac{1}{3}\\x=2+\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{7}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{7};\frac{7}{3}\right\}\)
\(2.5^{x+1}+3.5^x=2^2.3.1\)
\(5^x.\left(10+3\right)=13\)
\(5^x=1\)
x = 0