Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = (4\(\sqrt{10}\) - 4\(\sqrt{6}\) + 5\(\sqrt{6}\) - 3\(\sqrt{10}\) )\(\sqrt{4-\sqrt{15}}\)
D = (\(\sqrt{10}\) + \(\sqrt{6}\) )\(\sqrt{4-\sqrt{15}}\)
D = \(\sqrt{\left(4-\sqrt{15}\right)10}\) + \(\sqrt{\left(4-\sqrt{15}\right)6}\)
D = \(\sqrt{40-10\sqrt{15}}\) + \(\sqrt{24-6\sqrt{15}}\)
D = \(\sqrt{\left(\sqrt{15}\right)^2-2.5.\sqrt{5}+5^2}\) + \(\sqrt{\left(\sqrt{15}\right)^2-2.3.\sqrt{15}+3^2}\)
D = \(\sqrt{\left(\sqrt{15}-5\right)^2}\) + \(\sqrt{\left(\sqrt{15}-3\right)^2}\)
D = 5 - \(\sqrt{15}\) + \(\sqrt{15}\) - 3 = 2
\(A=\left(\sqrt{9-\sqrt{56}}-\sqrt{15+2\sqrt{56}}\right)\div5\sqrt{2}\)
\(A=\left[\left(\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\right)-\left(\sqrt{\left(\sqrt{8}+\sqrt{7}\right)^2}\right)\right]\div5\sqrt{2}\)
\(A=\left(\left|\sqrt{7}-\sqrt{2}\right|-\left|\sqrt{8}+\sqrt{7}\right|\right)\div5\sqrt{2}\)
\(A=\left(\sqrt{7}-\sqrt{2}-\sqrt{8}-\sqrt{7}\right)\div5\sqrt{2}\)
\(A=\left(-\sqrt{10}\right)\div5\sqrt{2}\)
\(A=\frac{-\sqrt{5}}{5}\)
\(X-7\sqrt{X}-8\sqrt{X}+56=0\)
\(\sqrt{X}\left(\sqrt{X}-7\right)-8\left(\sqrt{X}-7\right)=0\)
\(\left(\sqrt{X}-8\right)\left(\sqrt{X}-7\right)=0\)
\(\sqrt{X}=7\Leftrightarrow X=49\)
\(\sqrt{X}=8\Leftrightarrow X=64\)
50) \(\sqrt{98-16\sqrt{3}}=4\sqrt{6}-\sqrt{2}\)
51) \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
52) \(\sqrt{4+\sqrt{15}}=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
53) \(\sqrt{5-\sqrt{21}}=\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{6}}{2}\)
54) \(\sqrt{6-\sqrt{35}}=\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{10}}{2}\)
55) \(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)
56) \(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
1) \(\cot51^0=\tan39^0\)
\(\cot79^015'=\tan10^045'\)
Do đó: \(\cot79^015'< \tan13^0< \tan28^0< \cot51^0< \tan47^0\)
2) \(\cos62^0=\sin28^0\)
\(\cos63^041'=\sin26^019'\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \cos63^041'< \cos62^0< \sin47^0< \sin50^0\)
=252
các bạn giúp mình khôi phục lại -158 nha các bạn!!!
cảm ơn trc!!!
số đó là
252
ai k mình
thì mình k lại
cho nha