Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì 2020 chia hết cho 4 nên chữ số tận cùng của số \(3^{2020}\) là số 1
b) Vì 2021 chia 4 dư 1 nên chữ số tận cùng của số \(3^{2021}\) là số 3
Nhận xét : Mọi lũy thừa trong \(A\) đều có số mũ khi chia cho 4 thì dư 3 (các lũy thừa đều có dạng n4(n - 2) + 3, n thuộc {2, 3, …, 2004}).
Theo tính chất 3 thì 23 có chữ số tận cùng là 8 ; 37 có chữ số tận cùng là 7 ; 411 có chữ số tận cùng là 4 ; …
Như vậy, tổng \(A\) có chữ số tận cùng bằng chữ số tận cùng của tổng : (8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 199.(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 1 + 8 + 7 + 4 = 200(1 + 8 + 7 + 4 + 5 + 6 + 3 + 2 + 9) + 8 + 7 + 4 = 9019.
Vậy chữ số tận cùng của tổng \(A\) là 9.
1.
A=19^5^1^8^9^0+2^9^1^9^6^9
Ta luôn có 1a=1 với a là số nguyên dương
=>19^5^1^8^9^0=195 và 2^9^1^9^6^9=29
=>A=195+29=(192)2.19+(24)2.2=(...1)2.19+(...6)2.2=...1.19+...6.2=...1
Vậy A có tận cung là 1.
2.
B=1/3+1/32+...+1/32005
3B=1+1/3+1/32+...+1/32004
3B-B=1-1/32005
2B=1-1/32005<1
=>2B<1=>B<1/2
Vậy B<1/2.
.
.
1) Ta có:
\(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}\)
Mà 195=194+1=...1.19=...19
29=22.4+1=...6 .2=...2
=>A=...19 + ...2= ...1
Vậy A có chữ số tận cùng là 1
a.Theo đề ta có:
4^5^6^7
=4^5^(...6) (vì 6 khi lũy thừa lên thì tận cùng không đổi)
=4^(...5) (vì 5 khi lũy thừa lên thì tận cùng không đổi)
=(...4) (vì 4 khi lũy thừa một số mũ lẻ thì tận cùng không đổi)
Vậy 4^5^6^7 có tận cùng là 4
b.
Ta có:
9 nếu lũy thừa một số mũ lẻ thì tận cùng của nó sẽ là 9.
Áp dụng vào bài, ta có:
9^9^9^9
= 9^9^(...9)
= 9^(...9)
= (...9)
Vậy 9^9^9^9 có tận cùng là 9.
(Nhớ cho mình đúng nha)