Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
=> /3y-2/ = 2y+9
=>\(\orbr{\begin{cases}3y-2=2y+9\\3y-2=-2y-9\end{cases}}\)=>\(\orbr{\begin{cases}3y-2y=2+9\\3y+2y=2-9\end{cases}}\)=>\(\orbr{\begin{cases}y=11\\5y=-7\end{cases}}\)=>\(\orbr{\begin{cases}y=11\\y=\frac{-7}{5}\end{cases}}\)
|3y-2|=2y-1
th1 : 3y-2=2y-1
y=1
th2 : 3y-2 = -2y+1
5y=3
y=3/5
\(2.x^2+5.x=12\)\(\Leftrightarrow2.x^2+5.x-12=0\Leftrightarrow2.x^2+8.x-3.x-12=0\)
\(\Leftrightarrow2.x\left(x+4\right)-3.\left(x+4\right)=0\Leftrightarrow\left(2.x-3\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2.x-3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-4;\frac{3}{2}\right\}\)
5x+(5x+2)=650
(5x+5x)+2=650( tính chất kết hợp)
2.5x=648
5x=648:2=324
Điều này ko xảy ra vì 5x luôn lẻ, còn 324 chẵn
x2 có giá trị nhỏ nhất là 0
vậy (x2+1)2016 có GTNN = 1 KHI x =0
từ đó GTNN P = 1+2017 = 2018
P=(x2 +1)2016+|2x-2015|
Vì (x2+1)2016 > |2x-2015|
mà cả hai đều lớn hơn hoặc bằng 0
=> (x2+1)2016 > hoặc = 0
|2x-2015| > hoặc = 0
TH1 :Dấu "=" xảy ra khi (x2+1)2016=0
=>x2+1=0
=>x2=-1
Vì x2 > hoặc = 0
mà -1 < 0
=> xE {rỗng}
TH2 : dấu "=" xảy ra khi |2x-2015|=0
=>2x-2015=0
=>2x=2015
=>x=1007,5
=>(x2+1)2016+|2x-2015|
=>(1007,52+1)2016+|2.1007,5-2015|
=>(1015057,25)2016+0
=>GTNN của P =1015057,252016 khi x=1007,5
=4.2 hoặc 6
?????????????????????????????????????????????????????????????