Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2009.2011
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2009 - 1/2011
= 1 - 1/2011
= 2010/2011
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}\)
\(=\frac{2015}{2015}-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=2\left(1-\frac{1}{100}\right)\)
\(M=2.\frac{99}{100}\)
\(M=\frac{99}{50}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)
\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\frac{98}{99}\)
\(N=\frac{49}{33}\)
= 1 - 1/3 + 1/3 .... - 1/31
= 1 - 1/31 = 30/31
tại sao lại ra vậy