Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>|5x+4|=19
=>5x+4=19 hoặc 5x+4=-19
=>5x=15 hoặc 5x=-23
=>x=3 hoặc x=-23/5
b: =>3|2x-9|=33
=>|2x-9|=11
=>2x-9=11 hoặc 2x-9=-11
=>2x=20 hoặc 2x=-2
=>x=10 hoặc x=-1
d: =>|17x-5|=|17x+5|
=>17x-5=17x+5 hoặc 17x-5=-17x-5
=>34x=0
hay x=0
<=> |17x - 5| = |17x + 5|
=> 17x - 5 = 17x + 5 hoặc 17x - 5 = -17x - 5
=> 0x = 10(loại) hoặc 34x = 0
<=> x = 0.
a) \(\Leftrightarrow2\left|3x-1\right|=\dfrac{4}{5}\)
\(\Leftrightarrow\left|3x-1\right|=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\dfrac{2}{5}\\3x-1=-\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{15}\\x=\dfrac{1}{5}\end{matrix}\right.\)
b)TH1: \(x\ge3\)
\(\Leftrightarrow x+5+x-3=9\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\left(tm\right)\)
TH2: \(-5\le x< 3\)
\(\Leftrightarrow x+5-x+3=9\Leftrightarrow8=9\left(VLý\right)\)
TH3: \(x< -5\)
\(\Leftrightarrow-x-5-x+3=9\Leftrightarrow2x=-11\Leftrightarrow x=-\dfrac{11}{2}\left(tm\right)\)
\(a,2.|3x-1|-\dfrac{3}{4}=\dfrac{1}{20}\)
\(2.|3x-1|=\dfrac{1}{20}+\dfrac{3}{4}\)
\(2.|3x-1|=\dfrac{4}{5}\)
\(|3x-1|=\dfrac{4}{5}:2\)
\(|3x-1|=\dfrac{2}{5}\)
\(\Rightarrow3x-1=\pm\dfrac{2}{5}\)
\(3x-1=\dfrac{2}{5}\)
\(3x=\dfrac{2}{5}+1\)
\(3x=\dfrac{7}{5}\)
\(x=\dfrac{7}{5}:3\)
\(x=\dfrac{7}{15}\)
\(3x-1=-\dfrac{2}{5}\)
\(3x=-\dfrac{2}{5}+1\)
\(3x=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:3\)
\(x=\dfrac{1}{5}\)
\(x\) sẽ xảy ra 2 trường hợp:
TH1 : \(\left|17x-5\right|=\left|17x+5\right|=0\)
Ta có : \(\left|17x-5\right|\ge0\) với mọi x
\(\left|17x+5\right|\ge0\) với mọi x
Nên \(\left|17x-5\right|-\left|17x+5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}17x-5=0\\17x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}17x=5\\17x=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)
\(\Rightarrow\) Ở trường hợp này không tìm được giá trị của \(x\)
TH2 : \(\left|17x-5\right|=\left|17x-5\right|\)
Ở TH2 chúng ta cũng có 2 trường hợp để xảy ra.
1/ \(17x-5=17x+5\)
Rõ ràng ta thấy ở TH này không tìm được giá trị của \(x\) (loại)
2/ \(\left|17x-5\right|=17x+5\)
Rõ ràng ta thấy : \(x=0\) (nhận)
\(\left|17x+5\right|=17x-5\)
Nếu \(x=0\) thì \(\left|17x+5\right|=5\) và \(17x-5=-5\)
Ta thấy \(\left|17x+5\right|\ne17x-5\) (không tìm được día trị của \(x\))
Nếu \(x>0\) thì \(\left|17x+5\right|\) luôn luôn lớn hơn \(17x-5\)
\(\Rightarrow\) Không tìm được giá trị của \(x\)
Vậy \(x=0\)
Thử lại :
\(\left|17x-5\right|-\left|17x+5\right|=\left|17.0-5\right|-\left|17.0+5\right|=5-5=0\) (đúng)
~ học tốt ~
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Nhầm sorry mk tưởng cộng sory bạn nha Thái Viết Nam
Ta có : |17x - 5| - |17x + 5| = 0
Mà |17x - 5| \(\ge\)0 ; |17x + 5| \(\ge\) 0
Nên \(\hept{\begin{cases}\left|17x-5\right|=0\\\left|17x+5\right|=0\end{cases}}\)
<=>\(\hept{\begin{cases}17x-5=0\\17x+5=0\end{cases}}\)
<=> \(\hept{\begin{cases}17x=5\\17x=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{17}\\x=-\frac{5}{17}\end{cases}}\)
Mà x ko thể đồng thời bằng 2 giá trị
Nên x thuộc rỗng