Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3
Đặt A =\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt a2+3a=t
=>\(A=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(a^2+3a+1\right)^2\)
Vậy...
\(a,n^5-5n^3+4n\)
\(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
a)\(A=n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=\left(n^4-n^2-4n^2+1\right)n\)
\(=\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]n\)
\(=\left(n^2-4\right)\left(n^2-1\right)n\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)
Điều cuối đúng hay ta có ĐPCM
b)Gọi 4 số tự nhiên liên tiếp đó lần lượt là \(a;a+1;a+2;a+3 (a;a+1;a+2;a+3 \in N)\)
Ta có;
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(a^2+3a=t\) thì ta có:
\(=t\left(t+2\right)+1=t^2+2t+1\)
\(=\left(t+1\right)^2=\left(a^2+3a\right)^2\) là số chính phương
Hay ta cũng có ĐPCM