Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A: 1/1.2 +1/2.3 +1/3.4+...+1/18.19+1/19.20
=> A= 1-1/2 +1/2-1/3+1/3-1/4+...+1/18-1/19+1/19-1/20
=>A= 1-1/20=19/20
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{19.20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{1}-\frac{1}{20}\)
\(=\frac{19}{20}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
=1-1/2+1/2-1/3+1/3-1/4+.........+1/18-1/19+1/19-1/20
=1-1/20
=19/20
D=1.2+2.3+3.4+...+19.20
=>3D=1.2.3+2.3.3+3.4.3+...+19.20
=1.2.3+2.3(4-1)+3.4(5-2)+...+19.20(21-18)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
=>3D=1.2.3+2.3.3+3.4.3+...+19.20
=1.2.3+2.3(4-1)+3.4(5-2)+...+19.20(21-18)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+19.20.21-18.19.20
=19.20.21=7980
=>D=7980:3=2660
Vậy D=2660
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\left(\frac{1}{1}-\frac{1}{20}\right)\div x=\frac{9}{10}\)
\(\Leftrightarrow\frac{19}{20}\div x=\frac{9}{10}\)
\(\Leftrightarrow x=\frac{19}{18}\)
Sửa đề : \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\right):x=\frac{9}{10}\)
\(\Leftrightarrow VT=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)=\frac{9}{10}x\)
\(\Leftrightarrow\left(1-\frac{1}{20}\right)=\frac{9}{10}x\Leftrightarrow\frac{19}{20}=\frac{9}{10}x\)
\(\Leftrightarrow\frac{19}{20}=\frac{18x}{20}\) Khử mẫu ta đc : \(\Leftrightarrow18x=19\Leftrightarrow x=\frac{19}{18}\)
ta có 2/1.2+2/2.3+2/3.4+...+2/8.9+2/9.10
=2/1-2/2+2/2-2/3+2/3-2/4+...+2/8-2/9+2/9-2/10
=2/1-2/10
=9/5
Đặt A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(A\times2=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A\times2=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(A\times2=\frac{1}{1}-\frac{1}{10}\)
\(A=\frac{9}{10}\times\frac{1}{2}=\frac{9}{20}\)
Đặt \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(\Rightarrow A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\left(1-\frac{1}{20}\right)\)
\(\Rightarrow A=2.\frac{19}{20}\)
\(\Rightarrow A=\frac{19}{10}\)
2.(1/1.2+1/2.3+.....+1/18.19+1/19.20)
2.(1/1-1/2+1/2-1/3+......+1/19-1/20)
2.(1/1-1/20)= 2.19/20=19/10