Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
\(\frac{A}{B}=\frac{2010+2011.2012}{2012.2013-2014}=\frac{2010+2011}{2013-2014}=\frac{4021}{-1}=-4021\)
1.
tong cua hai so la;
425x2=850
vi ab la so co hai chu so nen => 7ab hon ab la 700 don vi
so 7ab la:
(850+700):2=775
=> ab=75
2.
ta co
2010/2011=1-1/2011
2011/2012=1-1/2012
2012/2013=1-1/2013
2013/2014=1-1/2014
vi so bi tru deu la 1 nen ta co:
1/2011>1/2012>1/2013>1/2014
vay 2010/2011<2011/2012<2012/2013<2013/2014
\(\frac{A}{B}=\frac{2010+2011\times2012}{2012\times2013-2014}\)
B = 2012 x 2013 - 2014 = 2012 x (2011+2) - 2014 = 2012 x 2011 + 2012 x 2 - 2014 = 2012 x 2011 + 2010 = 2010 + 2011 x 2012
Thay B vào biểu thức tính thương, ta được:
\(\frac{A}{B}=1\)
Đáp số: 1
Nếu mình giúp đc bạn, thì cho mình nhé!
Bài giải
Ta có:
2010 + 2011 x 2012 /2012 x 2013 – 2014
= ( 2010 + 2011 x 2012) / (2012 x (2011 + 2) – 2014)
= ( 2010 + 2011 x 2012) / (2012 x 2011) + ((2012 x2 ) – 2014)
= ( 2010 + 2011 x 2012) / (2012 x 2011) + 2010
= 1/1
= 1
nhin vao de la bik = 1 rui ko can phai lam dai dong vay dau
\(\frac{2011}{2010}\times\frac{2012}{2011}\times\frac{2013}{2012}\times\frac{2014}{2013}\times\frac{1005}{1007}\)
\(=\frac{2014}{2010}\times\frac{1005}{1007}\)
\(=\frac{2\times1007\times1005}{2\times1005\times1007}\)
\(=1\)
\(\frac{2011}{2010}\cdot\frac{2012}{2011}\cdot\frac{2013}{2012}\cdot\frac{2014}{2013}\cdot\frac{2010}{2014}\)
\(=\frac{2010\cdot2011\cdot2012\cdot2013\cdot2014}{2010\cdot2011\cdot2012\cdot2013\cdot2014}\)
= 1