Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức |m|+|n|≥|m+n| .Dấu = xảy ra khi m,n cùng dấu
A≥|x−a+x−b|+|x−c+x−d|=|2x−a−b|+|c+d−2x|
≥|2x−a−b−2x+c+d|=|c+d−a−b|
Dấu = xảy ra khi x−a và x−b cùng dấu hay(x≤a hoặc x≥b)
x−c và x−d cùng dấu hay(x≤c hoặc x≥d)
2x−a−b và c+d−2x cùng dấu hay (x+b≤2x≤c+d)
Vậy Min A =c+d-a-b khi b≤x≤c
\(x\ge-\frac{1}{2}\Rightarrow3x-2x-1=0\Rightarrow x=1\)
\(x< \frac{-1}{2}\Rightarrow3x+2x+1\Rightarrow x=-\frac{1}{5}\left(loai\right)\)
\(3x-|2x-1|=2\Leftrightarrow|2x-1|=2-3x\)
\(\Rightarrow-2x+1=2-3x\)hoặc \(-2x+1=3x-2\)
\(\Rightarrow1x+1=2\)hoặc \(-5x+1=-2\)
\(\Rightarrow x=1\)hoặc\(x=\frac{5}{3}\)
câu B: vì /3.x+1/ lớn hơn hoặc bằng 0
suy ra /3.x+1/ +1/4 lớn hơn hoặc bằng 0+1/4
suy ra B lớn hơn hoặc bằng 1/4
vậy Bmin là 1/4
câu C vì / 5-3.x / lớn hơn hoặc bằng 0
suy ra /5-3.x/ +1 lớn hơn hoặc bằng 0+1
suy ra C lớn hơn hoặc bằng 1
Vậy Cmin là 1
câu D vì /4+1/2.x/ lớn hơn hoặc bằng 0
suy ra /4+1/2.x/ +7 lớn hơn hoặc bằng 0+7
suy ra D lớn hơn hoặc bằng 7
vậy Dmin là 7
|x - 1,3| + |2x - 1| = 0
Có |x - 1,3| \(\ge\)0
|2x - 1| \(\ge\)0
=> Để |x - 1,3| + |2x - 1| = 0
=> |x - 1,3| = 0 và |2x - 1| = 0
=> x - 1,3 = 0 và 2x - 1 = 0
=> x = 1,3 và 2x = 1
=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)
=> Không có giá trị của x thỏa mãn đề bài