Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có thể giải theo 2 cách. Trước hết xin lưu ý: ta coi công việc là 1 đơn vị
Công thức: năng suât x thời gian = công việc = 1
=> thời gian = 1/năng suất
C1: Giải bằng cách lập phương trình.
Do 2 tổ làm chung trong 12h sẽ hoàn thành 1 công việc nên trong 1h 2 tổ sẽ làm được 1/12 (công việc) (đây là tổng năng suất của 2 tổ )
Đặt năng suất tổ 2 là x (0 < x < 1/12)
=> năng suất tổ 1 là 1/12 - x.
Do họ làm chung với nhau trong 4h thì tổ 1 đi làm việc khác, tổ 2 làm nốt công việc trong 10h nên ta có phương trình: 4(x + 1/12 - x) + 10x = 1
<=> 4.1/12 + 10x = 1
<=> 1/3 + 10x = 1
<=> 10x = 1 - 1/3
<=> 10x = 2/3
<=> x = 1/15 (thoả mã điều kiện 0 < x < 1/12)
=> 1/12 - x = 1/60.
=> năng suất tổ 2 là 1/15 và năng suất tổ 1 là 1/60
=> tổ 2 hoàn thành công việc trong 15h và tổ 1 hoàn thành công việc trong 60h
Lưu ý: cũng có thể đặt năng suất tổ 1 là x => năng suất tổ 2 là 1/12 - x
Giải phương trình ta được x = 1/60 và 1/12 - x = 1/15
C2: Giải bằng cách lập hệ phương trình.
Do 2 tổ làm chung trong 12h thì xong 1 công việc nên trong 1h thì 2 tổ làm được 1/12 công việc
Đặt năng suất tổ 1 là x (0 < x < 12) và năng suất tổ 2 là y (0 < y < 1/12)
=> ta có x + y = 1/12 (1)
Do họ làm chung với nhau trong 4h thì tổ 1 được điều đi làm việc khác , tổ thứ 2 làm nốt công việc trong 10h
nên ta có phương trình:
4(x + y) + 10y = 1 (2)
Thay (1) vào (2) ta được
4.1/12 + 10y = 1
<=> 1/3 + 10y = 1
<=> 10y = 1 - 1/3
<=> 10y = 2/3
<=> y = 1/15
thay y = 1/15 vào (1) ta tính đựơc x = 1/60
=> tổ 1 hoàn thành công việc trong 60h và tổ 2 hoàn thành công việc trong 15h
đáng nhẽ phải giải hệ gồm 2 phương trình (1) và (2) nhưng vì nó đơn giản nên mình làm tắt
có lẽ hơi khó hiểu, mong bạn thông cảm cho.
Bài này có thể giải theo 2 cách. Trước hết xin lưu ý: ta coi công việc là 1 đơn vị
Công thức: năng suât x thời gian = công việc = 1
=> thời gian = 1/năng suất
C1: Giải bằng cách lập phương trình.
Do 2 tổ làm chung trong 12h sẽ hoàn thành 1 công việc nên trong 1h 2 tổ sẽ làm được 1/12 (công việc) (đây là tổng năng suất của 2 tổ )
Đặt năng suất tổ 2 là x (0 < x < 1/12)
=> năng suất tổ 1 là 1/12 - x.
Do họ làm chung với nhau trong 4h thì tổ 1 đi làm việc khác, tổ 2 làm nốt công việc trong 10h nên ta có phương trình: 4(x + 1/12 - x) + 10x = 1
<=> 4.1/12 + 10x = 1
<=> 1/3 + 10x = 1
<=> 10x = 1 - 1/3
<=> 10x = 2/3
<=> x = 1/15 (thoả mã điều kiện 0 < x < 1/12)
=> 1/12 - x = 1/60.
=> năng suất tổ 2 là 1/15 và năng suất tổ 1 là 1/60
=> tổ 2 hoàn thành công việc trong 15h và tổ 1 hoàn thành công việc trong 60h
Lưu ý: cũng có thể đặt năng suất tổ 1 là x => năng suất tổ 2 là 1/12 - x
Giải phương trình ta được x = 1/60 và 1/12 - x = 1/15
C2: Giải bằng cách lập hệ phương trình.
Do 2 tổ làm chung trong 12h thì xong 1 công việc nên trong 1h thì 2 tổ làm được 1/12 công việc
Đặt năng suất tổ 1 là x (0 < x < 12) và năng suất tổ 2 là y (0 < y < 1/12)
=> ta có x + y = 1/12 (1)
Do họ làm chung với nhau trong 4h thì tổ 1 được điều đi làm việc khác , tổ thứ 2 làm nốt công việc trong 10h
nên ta có phương trình:
4(x + y) + 10y = 1 (2)
Thay (1) vào (2) ta được
4.1/12 + 10y = 1
<=> 1/3 + 10y = 1
<=> 10y = 1 - 1/3
<=> 10y = 2/3
<=> y = 1/15
thay y = 1/15 vào (1) ta tính đựơc x = 1/60
=> tổ 1 hoàn thành công việc trong 60h và tổ 2 hoàn thành công việc trong 15h
đáng nhẽ phải giải hệ gồm 2 phương trình (1) và (2) nhưng vì nó đơn giản nên mình làm tắt
có lẽ hơi khó hiểu, mong bạn thông cảm cho.
Gọi thời gian đội 2 làm một mình hoàn thành công việc là x (giờ , x > 12)
=> Trong 1 giờ tổ 2 làm một minh được : 1/x (công việc)
Hai tổ làm chung hoàn thành trong 12 giờ
Trong thực tế 2 tổ làm chung được 4 giờ
=> Hai tổ làm chung được 4/12 = 1/3 (công việc)
=> Tổ 2 làm một mình hết 2/3 công việc trong 10 giờ
=> Trong 1 giờ tổ 2 làm một mình được : (2/3)/10 = 2/30 = 1/15 (công việc)
Ta có : 1/x = 1/15 <=> x = 15
Vậy tổ 2 làm một mình thì sau bao lâu 15 giờ sẽ hoàn thành công việc
Gọi thời gian mỗi người làm riêng một mình lần lượt là x,y,z (giờ) (x,y,z > 0)
Suy ra : mỗi giờ người thứ nhất và người thứ hai làm được \(\frac{1}{6}\) công việc , tức là :
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)
mỗi giờ người thứ hai và người thứ ba làm được : \(\frac{1}{4,5}=\frac{2}{9}\) công việc , tức là \(\frac{1}{y}+\frac{1}{z}=\frac{2}{9}\)
mỗi giờ người thứ ba và người thứ nhất làm được : \(\frac{1}{3+\frac{36}{60}}=\frac{5}{18}\) công việc.
Suy ra ta có : \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\\\frac{1}{y}+\frac{1}{z}=\frac{2}{9}\\\frac{1}{z}+\frac{1}{x}=\frac{5}{18}\end{cases}\) \(\Leftrightarrow\begin{cases}\frac{1}{x}=\frac{1}{9}\\\frac{1}{y}=\frac{1}{18}\\\frac{1}{z}=\frac{1}{6}\end{cases}\) \(\Leftrightarrow\begin{cases}x=9\\y=18\\z=6\end{cases}\)
Vậy nếu mỗi người làm riêng một mình thì :
người thứ nhất làm xong việc trong 9 giờ , người thứ hai làm xong trong 18 giờ , người thứ ba làm xong trong 6 giờ
Gọi số công nhân mỗi tổ là \(m,n\)
\(\frac{m}{3}=\frac{n}{4}=m+n=35\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{m}{3}+\frac{n}{4}=\frac{m+n}{3+4}=\frac{35}{7}=5\)
\(\frac{m}{3}=5=m=5.3=15\)
\(\frac{n}{4}=5=m=5.4=20\)
Vậy tổ 1 có 15 công nhân , tổ hai có 20 công nhân
Do 2 tổ làm chung trong 12h sẽ hoàn thành 1 công việc nên trong 1h 2 tổ sẽ làm được 1/12 (công việc) (đây là tổng năng suất của 2 tổ )
Đặt năng suất tổ 2 là x (0 < x < 1/12)
=> năng suất tổ 1 là 1/12 - x.
Do họ làm chung với nhau trong 4h thì tổ 1 đi làm việc khác, tổ 2 làm nốt công việc trong 10h nên ta có phương trình: 4(x + 1/12 - x) + 10x = 1
<=> 4.1/12 + 10x = 1
<=> 1/3 + 10x = 1
<=> 10x = 1 - 1/3
<=> 10x = 2/3
<=> x = 1/15 (thoả mã điều kiện 0 < x < 1/12)
=> 1/12 - x = 1/60.
=> năng suất tổ 2 là 1/15 và năng suất tổ 1 là 1/60
=> tổ 2 hoàn thành công việc trong 15h và tổ 1 hoàn thành công việc trong 60h
Bạn tham khảo ở link này nhé:
https://vn.answers.yahoo.com/question/index?qid=20100731184856AAKPk7m