Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,a) 695- [200+ (11- 12)]
= 695- [200+ (11- 1)]
= 695- [200+ 10]
= 695- 210
= 485
b) (519: 517+ 3): 7
= (52+ 3): 7
= (25+ 3): 7
= 28: 7
= 4
c) 129- 5[29- (6- 12)]
= 129- 5[29- (6- 1)]
= 129- 5[29- 5]
= 129- 5. 24
= 129- 120
= 9
3,a) 2x- 49= 5. 32
2x- 49= 5. 9
2x- 49= 45
2x = 45+ 49
2x = 94
x = 94: 2
x = 47
c) 2x- 15= 17
2x = 17+ 15
2x = 32
2x = 25
=> x = 5
Câu 3b bạn tự làm nhé, xin loiosxn vì không giúp được cả bài.
CHÚC BẠN HỌC GIỎI !!!
MÌNH TÌM RA CÁCH LÀM CÂU 3b RỒI !!!
5x+ 2x= 45+ 20: 15
5x+ 2x= 45+ \(\frac{4}{3}\)
5x+ 2x= \(\frac{139}{3}\)
(5+ 2)x=\(\frac{139}{3}\)
7x =\(\frac{139}{3}\)
x =\(\frac{139}{3}\): 7
x =\(\frac{139}{21}\)
CHÚC BẠN HỌC GIỎI !!!
a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a=897
b=8668
c=7
d=3671
a,=29.(69+31)-2300
=29.100-2300
=2900-2300
=600
MK NÓI THẬT MẤY BÀI NÀY DỄ ỢT