K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

a) x^3 - 6x^2 + 12x -8 = 0
x^3 - 3.x^2 .2 + 3.x.2^2 - 2^3 = 0
=> ( x-2) = 0
=> x-2=0 <=> x=2

10 tháng 9 2017

b) 8x^3 - 12x^2 + 6x -1 = 0
(2x)^3 - 3.(2x)^2.1 + 3.2x.1 -1^3 = 0
=> ( 2x - 1 ) = 0
=> 2x-1 = 0 <=> 2x = 1
x = 1/2

24 tháng 10 2017

x3+3x2-10x=0

=>x(3+3.2-10)=0

=>x=0

x3-5x2-14x=0

=>x(3-5.2-14)=0

=>x=0

x3+5x2-24x=0

=>x(3+5.2-24)=0

=>x=0

24 tháng 10 2017

Câu a)

\(x^3+3x^2-10=0\Rightarrow x\left(x^2+3x-10\right)=0\Rightarrow x\left(x^2-2x+5x-10\right)=0\Rightarrow x\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\Rightarrow x\left(x+5\right)\left(x-2\right)=0\)

\(\Rightarrow x=0;x=5;x=2\)

6 tháng 7 2021

a) x2 - 4y2 tại x = 102 , y = \(\dfrac{1}{2}\)

= x2 - (2y)2

= (x - 2y)(x + 2y)

Thay x = 102 , y = \(\dfrac{1}{2}\) vào , ta có :

(x - 2y)(x + 2y)

= (102 - 2.\(\dfrac{1}{2}\))(102 + 2 . \(\dfrac{1}{2}\))

= 101 . 103

= 10403 

b)Bạn xem lại đề b),c) có bị thiếu không, nên mình bổ sung thêm nhé :

     8x3 + 12x2 + 6x + 1 tại x = \(\dfrac{29}{2}\)

= (2x)3 + 3.(2x2).1 + 3.2x.1 + 1

= (2x + 1)3

Thay x = \(\dfrac{29}{2}\) vào , ta có :

(2x + 1)3

= (2.\(\dfrac{29}{2}\) + 1)3

= (29 + 1)3

= 27000

c) x3 - 6x + 12x - 1 tại x = 102

= x3 - 3.x2.2 + 3.x.22 - 23

= (x - 2)3

Thay x = 102 vào , ta có :

(x - 2)3

= (102 - 2)3

= 1000000

 Chúc bạn học tôt

6 tháng 7 2021

thanks bn

 

10 tháng 10 2019

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

19 tháng 7 2016

a)      \(2\left(x+5\right)-x^2-5x=0\)

  \(\Leftrightarrow2x+10-x^2-5x=0\)

 \(\Leftrightarrow-x^2-3x+10=0\)

\(\Leftrightarrow x^2+3x-10=0\)

 \(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

c)\(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)

\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)

d) \(x^3+x=0\)

\(\Leftrightarrow x^2\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

e)\(x^2-2x-3=0\)

\(\Leftrightarrow x^2+x-3x-3=0\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

19 tháng 7 2016

Cảm ơn bạn nha

6 tháng 7 2021

\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)

\(\Leftrightarrow-5x-18=0\)

\(\Leftrightarrow x=-\dfrac{18}{5}\)

Vậy ...

\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)

\(\Leftrightarrow12x+6=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy ...

\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)

\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)

Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)

\(\Rightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy ...

\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)

\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)

Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy ...

6 tháng 7 2021

sao lại trả lời lại nhỉ ??