K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

NV
14 tháng 3 2020

1.

\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

\(f\left(x\right)=0\Rightarrow x=7\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

2.

\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

NV
14 tháng 3 2020

3.

\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

Vậy:

\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

4.

\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

Vậy:

\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

\(f\left(x\right)< 0\Rightarrow-6< x< 2\)

giải các hệ BPT sau: a) \(\left\{{}\begin{matrix}5x-24x+5\\5x-4< x+2\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\) f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\) g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\) h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\) j)...
Đọc tiếp

giải các hệ BPT sau:

a) \(\left\{{}\begin{matrix}5x-2>4x+5\\5x-4< x+2\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\)

c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\)

d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)

e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\)

f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\)

g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\)

h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)

j) \(\left\{{}\begin{matrix}\frac{3x+1}{2}-\frac{3-x}{3}\le\frac{x+1}{4}-\frac{2x-1}{3}\\3-\frac{2x+1}{5}>x+\frac{4}{3}\end{matrix}\right.\)

3
25 tháng 3 2020
https://i.imgur.com/NOxfqjV.jpg
25 tháng 3 2020
https://i.imgur.com/awOKwJi.jpg
6 tháng 5 2016

\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)

\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)

\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)

Lấy Logarit cơ số 2 hai vế, ta được :

\(2\left(x-1\right)^2=\left(\log_2105\right)x\)

\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)

\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)

Vậy phương trình đã cho có 2 nghiệm

NV
21 tháng 4 2020

1.

\(\frac{x^2+2x+5}{x+4}-\left(x-3\right)\ge0\)

\(\Leftrightarrow\frac{x^2+2x+5-\left(x-3\right)\left(x+4\right)}{x+4}\ge0\)

\(\Leftrightarrow\frac{x+17}{x+4}\ge0\Rightarrow\left[{}\begin{matrix}x>-4\\x\le-12\end{matrix}\right.\)

2.

\(\frac{x^2-3x-1}{2-x}+x>0\)

\(\Leftrightarrow\frac{x^2-3x-1+x\left(2-x\right)}{2-x}>0\)

\(\Leftrightarrow\frac{-x-1}{2-x}>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)

3.

\(\frac{3x-47}{3x-1}-\frac{4x-47}{2x-1}>0\)

\(\Leftrightarrow\frac{\left(3x-47\right)\left(2x-1\right)-\left(4x-47\right)\left(3x-1\right)}{\left(3x-1\right)\left(2x-1\right)}>0\)

\(\Leftrightarrow\frac{-6x\left(x-8\right)}{\left(3x-1\right)\left(2x-1\right)}>0\Rightarrow\left[{}\begin{matrix}0< x< \frac{1}{3}\\\frac{1}{2}< x< 8\end{matrix}\right.\)

NV
21 tháng 4 2020

4.

\(\frac{x\left(x+2\right)+9}{x+2}-4\ge0\)

\(\Leftrightarrow\frac{x^2+2x+9-4\left(x+2\right)}{x+2}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x+2}\ge0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{x+2}\ge0\Rightarrow x>-2\)

5.

\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x+6\right)}{\left(x-7\right)^3\left(x-2\right)^2}\le0\Rightarrow\left[{}\begin{matrix}x\le-6\\1\le x< 2\\2< x< 7\\x=-2\end{matrix}\right.\)

6. Xem lại đề