K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có 

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

31 tháng 1 2022

tại sao AM/AB = AN/AC vậy???

16 tháng 1 2021

a) Xét tam giác ABM và  tam giác ACN:

Góc A chung

AB = AC (do tam giác ABC cân tại A)

AM = AN (gt)

Suy ra: tam giác ABM = tam giác ACN (c g c)

16 tháng 1 2021

b) Xét tam giác AMN có :

AM =AN (gt)

Suy ra:  tam giác AMN cân tại A

Suy ra góc ANM = \(\dfrac{\text{180 - góc A}}{2}\)

mà góc ABC = \(\dfrac{\text{180 - góc A}}{2}\)  ( do tam giác ABC cân tại A)

Suy ra: góc ANM = góc ABC

Mà 2 góc này ở vị trí đồng vị của MN và BC

Suy ra MN song song BC

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: HB=KC

c: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hayΔOBC cân tại O

27 tháng 1 2021

Xét tg ABM và tg ACN có:

AB = AC (tg ABC cân tại A)

^B = ^C (tg ABC cân tại A)

BM = CN (gt)

=> tg ABM = tg ACN (cgc)

=> AM = AN (cctu)

=> AMN là tg cân

a: AM+MC=AC

NA+NB=AB

mà AB=AC; AM=AN

nên MC=NB

b: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

=>góc OBC=góc OCB

=>ΔOBC cân tại O

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

b: \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)

\(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)

Do đó: \(\widehat{AMN}=\widehat{ABC}\)

mà hai góc này ở vị trí đồng vị

nên MN//BC

a: Xét ΔABN và ΔACM có 

AB=AC

\(\widehat{A}\) chung

AN=AM

Do đó: ΔABN=ΔACM