Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, kéo dài tia Am về phía M cắt DC tại F
Do ABCD là hình thang có góc A=góc D=90 độ nên AB song song CD
=> AB cũng song song DF => góc MCF = góc MBA ( so le trong )
xét tam giác MAB và tam giác MFC có:
góc CMF= góc AMB ( đối đỉnh)
MB=MC( M là trung điểm BC)
góc ABM= góc MCF( chứng minh trên)
=> tam giác MAB= tam giác MFC ( g.c.g)
=> MA=MF
Xét ta giác ADF có DM là đương trung tuyến ứng với cạnh huyền AF => DM=AM=MF
=> tam giác ADM và tam giác MDF cân tại M => góc MAD= góc MDA= 45 độ => góc MAB = 90 độ - góc MAD và góc MDC = 90 độ - góc MDA <=> góc MAB= 45 độ và góc MDC= 45 độ => góc MAB=góc MDC
3, Tương tự như câu 1
4, a+b+c=0 => a+b=-c => (a+b)^3=-c^3 <=> a^3+3a^2b+3ab^2+b^3=-c^3 => a^3+b^3+c^3=-3a^2b-3ab^2
<=> a^3+b^3+c^3= -3ab(a+b) Mà a+b=-c nên thay vào ta có:
a^3+b^3+c^3=-3ab(-c)=3abc mà abc=-2 => a^3+b^3+c^3=-6
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?