Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
Ta có: \(A=-x^2+2x+4\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1:
x3+y3=152=> (x+y)(x2-xy+y2)=152
Mà x2-xy+y2=19
=> 19(x+y)=152=> x+y=8
Ta cũng có x-y=2
=> x=5;y=3
Bài 2:
x2+4y2+z2=2x+12y-4z-14
=> x2+4y2+z2-2x-12y+4z+14=0
=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0
=> (x+1)2+(2y-3)2+(z+2)2=0
=> (x+1)2=(2y-3)2=(z+2)2=0
=> x=-1;y=3/2;z=-2
Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
\(1,\\ a,=x^2+2xy+y^2\\ b,=x^2-4xy+4y^2\\ c,=x^2y^4-1\\ d,=\left[\left(x-y\right)\left(x+y\right)\right]^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\\ 2,\\ a,=\left(x+2\right)^2\\ b,=\left(3x-2\right)^2\\ c,=\left(\dfrac{x}{2}+1\right)^2\\ d,=\left(x+y-2\right)^2\)
Bài 1 : \(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)
Bài 2:
1. \(x^2-2x+1=\left(x-1\right)^2\)
2. \(x^2+2x+1=\left(x+1\right)^2\)
3. \(x^2-6x+9=\left(x-3\right)^2\)
4. \(x^2-10x+25=\left(x-5\right)^2\)
5. \(x^2+14x+49=\left(x+7\right)^2\)
6. \(x^2-22x+121=\left(x-11\right)^2\)
7. \(4x^2-4x+1=\left(2x-1\right)^2\)
8. \(x^2-4x+4=\left(x-2\right)^2\)
9. \(x^2-2xy+y^2=\left(x-y\right)^2\)
10. \(4x^2-4xy+y^2=\left(2x-y\right)^2\)
Bài 1 :
\(\left(y+a\right)^3=y^3+3y^2a+3ya^2+a^3\)
Bài 2 : mk lm tiếp phần còn lại thôi, mấy câu mk ko lm có ở bài trc rồi
\(x^2+14x+49=\left(x+7\right)^2\)
\(x^2-22x+121=\left(x-11\right)^2\)
\(4x^2-4x+1=\left(2x-1\right)^2\)
\(x^2-4x+4=\left(x-2\right)^2\)
\(x^2-2xy+y^2=\left(x-y\right)^2\)
\(4x^2-4xy+y^2=\left(2x-y\right)^2\)
\(A=x^4+2x^3+7x^2+6x+9\)
\(=\left(x^2\right)^2+2.x^2.x+x^2+6\left(x^2+x\right)+9\)
\(=\left(x^2+x\right)^2+2.\left(x^2+x\right).3+3^2\)
\(=\left(x^2+x+3\right)^2\)
2, \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow152=\left(x+y\right).19\)
\(\Rightarrow x+y=8\)
Mà \(x-y=2\Rightarrow\hept{\begin{cases}x=\left(8+2\right):2=5\\y=x-2=3\end{cases}}\)
Vậy x = 5 và y = 3
cảm ơn nhé