K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
18 tháng 6 2021

\(E=\frac{1}{2\times9}+\frac{1}{9\times7}+\frac{1}{7\times19}+...+\frac{1}{252\times509}\)

\(E=\frac{2}{4\times9}+\frac{2}{9\times14}+\frac{2}{14\times19}+...+\frac{2}{504\times509}\)

\(E=\frac{2}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{504\times509}\right)\)

\(E=\frac{2}{5}\times\left(\frac{9-4}{4\times9}+\frac{14-9}{9\times14}+\frac{19-14}{14\times19}+...+\frac{509-504}{504\times509}\right)\)

\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(E=\frac{2}{5}\times\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(E=\frac{101}{1018}\)

7 tháng 8 2015

B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)

B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)

B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)

B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)

B = \(\frac{2}{81}\)

14 tháng 8 2017

thank you bạn nha

Cô mik cũg cho bài này

4 tháng 4 2016

4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)

Ta thấy:

4/(5x5) < 4/(3x7) = 1/3 – 1/7

4/(9x9) < 4/(7x11) = 1/7 – 1/11

…………

4/(409x409) < 4/(407x411) = 1/407 – 1/411

Mà :

4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411

4S < 136/411

S < 34/411 < 34/408 = 1/12

Hay  S < 1/12

29 tháng 1 2016

ai kết bạn không

a: \(=\dfrac{5}{7}\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)=\dfrac{5}{7}\cdot\dfrac{-7}{11}=-\dfrac{5}{11}\)

b: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\left(4+\dfrac{3}{8}\right)\)

\(=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\)

c: \(=\dfrac{2}{15}-\dfrac{2}{15}\cdot5+\dfrac{3}{15}=\dfrac{2}{15}\cdot\left(-4\right)+\dfrac{3}{15}=\dfrac{-8+3}{15}=\dfrac{-5}{15}=-\dfrac{1}{3}\)

d: \(=\dfrac{4}{9}\left(19+\dfrac{1}{3}-39-\dfrac{1}{3}\right)=\dfrac{4}{9}\cdot\left(-20\right)=-\dfrac{80}{9}\)

28 tháng 4 2017

\(\dfrac{1}{2\cdot5}+\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{9\cdot19}+\dfrac{1}{10\cdot19}=\dfrac{3+2}{2.3.5}+\dfrac{4+3}{3\cdot4\cdot7}+...+\dfrac{10+9}{9\cdot10\cdot19}=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)

14 tháng 3 2019

Ta có: A = \(\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)
A = \(\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)

A = \(-1+1+\frac{1}{2}\)

A = \(\frac{1}{2}\)

B = \(\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)

B = \(\frac{9}{16}+\frac{8}{27}+1+\frac{7}{16}-\frac{19}{27}\)

B = \(\left(\frac{9}{16}+\frac{7}{16}\right)+1+\left(\frac{8}{27}-\frac{19}{27}\right)\)

B = \(1+1-\frac{11}{27}\)

B = \(\frac{43}{27}\)

Mà 1/2 < 43/27 (Vì 1/2 < 1; 43/27 > 1)

=> A < B

14 tháng 3 2019

                       Giải

\(A=\frac{-2}{11}+\frac{6}{7}+\frac{1}{2}+\frac{-9}{11}+\frac{1}{7}\)

\(\Leftrightarrow A=\left(\frac{-2}{11}+\frac{-9}{11}\right)+\left(\frac{6}{7}+\frac{1}{7}\right)+\frac{1}{2}\)

\(\Leftrightarrow A=\frac{-11}{11}+\frac{7}{7}+\frac{1}{2}\)

\(\Leftrightarrow A=-1+1+\frac{1}{2}\)

\(\Leftrightarrow A=\frac{1}{2}< 1\left(1\right)\)

\(B=\left(\frac{9}{16}+\frac{8}{27}\right)+\left(1+\frac{7}{16}+\frac{-19}{27}\right)\)

\(\Leftrightarrow B=\left(\frac{9}{16}+\frac{7}{16}\right)+\left(\frac{8}{27}+\frac{-19}{27}\right)+1\)

\(\Leftrightarrow B=\frac{16}{16}+\frac{-11}{27}+1\)

\(\Leftrightarrow B=1+\frac{-11}{27}+1\)

\(\Leftrightarrow B=2+\frac{-11}{27}\)

\(\Leftrightarrow B=\frac{43}{27}\)\(>1\left(2\right)\)

Từ (1) và (2) suy ra A < B

29 tháng 5 2018

\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)

\(A=1-\frac{1}{56}\)

\(A=\frac{55}{56}\)

\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)

\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)

\(B=\frac{1}{3}-\frac{1}{27}\)

\(B=\frac{8}{27}\)

\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)

\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)

\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)

\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)

\(C=\frac{4}{3}\cdot\frac{33}{102}\)

\(C=\frac{22}{51}\)

29 tháng 5 2018

Các bạn giải giúp mình nha😐