K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

k minh minh giai cho

8 tháng 11 2015

1) Vì x là số nhỏ nhất khác 0 trong tập hợp BC(21;35;99)\(\Rightarrow\)x\(\in\)BCNN(21;35;99)=32.5.7.11=3465

        Vậy x = 3465

2) Vì x chia hết cho 12, x chia hết cho 21, x chia hết cho 25\(\Rightarrow\)x\(\in\)BC(12;21;25)

BCNN(12;21;25)=22.3.52.7=2100

BC(12;21;25)=B(2100)={0;2100;4200;....}

Vì x<500 \(\Rightarrow\)x=0

3) BCNN(34;85)=2.5.17=170

BC(34;85)=B(170)={0,170,340;510;680;850;1020;...}

Vì 500<x<1000\(\Rightarrow\)x\(\in\){510;680;850}

4)Vì x chia hết cho 39, x chia hết cho 65, x chia hết cho 91\(\Rightarrow\)x\(\in\)BC(39;65;91}

BCNN(39;65;91)=3.5.7.13=1365

BC(39;65;91)=B(1365)={0,1365;2730;4095;5460;...}

Vậy x={0;1365;2730;4095;5460;...}

4 tháng 1 2022

a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)

15 tháng 1 2022

Cảm ơn bạn nhiều nha Đặng Hoàng Lâm!

6 tháng 2 2017

a, Vì x + 2011 là số nguyên dương nhỏ nhất nên x là hiệu của số nguyên dương nhỏ nhất và 2011.

x = 1 - 2011

x = -2010.

b, -567 < x < 567

-566 \(\le x\le566\)

Vậy tổng các số nguyên x là 0.

3 tháng 5 2021

a)n=5

b)X=16;-10;2;4

c)x=113;39;5;3;1;-1;-35;-109

23 tháng 11 2021

Answer:

a) \(\left(n+2\right)⋮\left(n-3\right)\)

\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)

\(\Rightarrow5⋮\left(n-3\right)\)

\(\Rightarrow n-3\) là ước của \(5\), ta có:

Trường hợp 1: \(n-3=-1\Rightarrow n=2\)

Trường hợp 2: \(n-3=1\Rightarrow n=4\)

Trường hợp 3: \(n-3=5\Rightarrow n=8\)

Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)

b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)

Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)

c) Ta có: \(x-2\inƯ\left(111\right)\)

\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)

\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)

d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)

Trường hợp 2: \(n+15=1\Rightarrow n=-14\)

Trường hợp 3: \(n+15=5\Rightarrow n=-10\)

Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)

Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)

e) \(3⋮n+24\)

\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)

f) Ta có:  \(x-2⋮x-2\)

\(\Rightarrow4\left(x-2\right)⋮x-2\)

\(\Rightarrow4x-8⋮x-2\)

\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)

\(\Rightarrow11⋮x-2\)

\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)